From Nitric Oxide to Desferal: Nitrogen Free Radicals and Iron in Oxidative Injury

  • Robin L. Willson
Part of the Basic Life Sciences book series (BLSC, volume 49)


During the last decade the possible role of free radicals in the development of disease, particularly cancer and inflammation, and in tissue injury following heart attack, transplant surgery, or certain types of chemical poisoning has attracted considerable interest.


Free Radical Electron Spin Resonance Electron Spin Resonance Spectrum Peroxy Radical Pulse Radiolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. A. Waters, “Chemistry of free radicals”, Oxford University Press (1948).Google Scholar
  2. 2.
    A. R. Forrester, J. M. Hay, and R. H. Thomson, “Organic chemistry of stable free radicals”, Academic Press, London & New York (1968).Google Scholar
  3. 3.
    R. P. Mason and J. L. Holtzman, The role of catalytic superoxide formation in the O2 inhibition of nitroreductase, Biochem. Biophys. Res. Comm. 67:1267–1274 (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    R. P. Mason, Inhibition of azo reductase by oxygen, Mol. Pharmacol. 14:665–671 (1978).PubMedGoogle Scholar
  5. 5.
    E. Perez-Reyes, B. Kalyanaraman, and R. P. Mason, The reductive metabolism of metronidazole and ronidazole by aerobic liver microsomes, Mol. Pharmacol. 17:239–244 (1980).PubMedGoogle Scholar
  6. 6.
    S. N. J. Moreno, R. P. Mason, R. P. A. Muniz, F. S. Cruz, and R. Docampo, Generation of free radicals from metronidazole and other nitroimidazoles by Tritrichomonas foetus, J. Biol. Chem. 258:4051–4054 (1983).PubMedGoogle Scholar
  7. 7.
    J. K. Horton, R. Brigelius, R. P. Mason, and J. R. Bend, Paraquat uptake into freshly isolated rabbit lung epithelial cells and its reduction to the paraquat radical under anaerobic conditions, Mol. Pharmacol. 29:484–488 (1986).PubMedGoogle Scholar
  8. 8.
    R. L. Willson, B. C. Gilbert, P. D. R. Marshall, and R. O. C. Norman, Metronidazole (‘Flagyl’): A pulse radiolysis and e.s.r. study, Int. J. Radiat. Biol. 26:427–434 (1974)CrossRefGoogle Scholar
  9. 9.
    J. A. Farrington, M. Ebert, E. J. Land, and K. Fletcher, Bipyridylium quaternary salts and related compounds, Biochim. Biophys. Acta 314: 372–381 (1973).PubMedCrossRefGoogle Scholar
  10. 10.
    B. S. Wolfenden and R. L. Willson, Radical-cations as reference chromogens in kinetic studies of one-electron transfer reactions: pulse radiolysis studies of 2,2′-Azinobis-(3-ethylbenzthiazoline-6-sulphonate), J. Chem. Soc. Perkin. Trans. II 805–812 (1982).Google Scholar
  11. 11.
    I. Wilson, P. Wardman, G. M. Cohen, and M. DArcy Docherty, Reductive role of glutathione in the redox cycling of oxidizable drugs, Biochem.Pharmacol. 35:21–22 (1986).PubMedCrossRefGoogle Scholar
  12. 12.
    L. G. Forni, V. O. Mora-Arellano, J. E. Packer, and R. L. Willson, Aminopyrine and antipyrine free radical cations pulse radiolysis studies of one-electron transfer reactions, J.Chem.Soc.Perkin Trans.II In Press.Google Scholar
  13. 13.
    D. Bahnemann and K-D Asmus, Free radical induced one-electron oxidation of the phenothiazines chlorpromazine and promethazine, J. Chem. Soc. Perkin Trans. II 1661–1668 (1983).Google Scholar
  14. 14.
    B. W. Griffin, Free radical intermediate in the N-demethylation of aminopyrine by horseradish peroxidase-hydrogen peroxide, FEBS Letts. 74:139–143 (1977).CrossRefGoogle Scholar
  15. 15.
    B. W. Griffin and P. L. Ting, Mechanism of N-demethylation of aminopyrine by hydrogen peroxide catalyzed by horseradish peroxidase, raetmyoglobin and protohemin, Biochemistry 17:2206–2211 (1978).PubMedCrossRefGoogle Scholar
  16. 16.
    L. H. Piette, G. Bulow, and I. Yamazaki, Electron-paramagnetic-resonance studies of the chlorpromazine free radical formed during enzymic oxidation by peroxidase-hydrogen peroxide, Biochim. Biophys. Acta 88:120–129 (1964).PubMedGoogle Scholar
  17. 17.
    D. C. Borg and G. C. Cotzias, Interaction of trace metals with phenothiazine drug derivatives, II. Formation of free radicals, Proc.N.A.S. 48:623–642 (1962).CrossRefGoogle Scholar
  18. 18.
    S. Forshult, C. Lagercrontz, and K. Torsell, Use of nitroso compounds as scavengers for the study of short-lived free radicals in organic reactions, Acta Chem. Scand. 23:522–530 (1969).CrossRefGoogle Scholar
  19. 19.
    M. J. Perkins, Essay in free radical chemistry, spec. pub. No. 27, 97 Chem. Soc. London (1970).Google Scholar
  20. 20.
    E. G. Janzen. Spin trapping, Acc. Chem. Res. 4:31 (1971).CrossRefGoogle Scholar
  21. 21.
    T. Brustad, Radiosensitization of anoxic cells of E. coli K-12 by organic nitroxyl free radicals, Int. J. Radiat. Biol. 22:443–456 (1972).CrossRefGoogle Scholar
  22. 22.
    E. Wold and T. Brustad, Binding of nitroxyls to radiation-induced DNA-transients in E. coli K-12 under in vivo conditions and its relevance for radiosensitization, Int. J. Radiat. Biol. 25:225–233 (1974).CrossRefGoogle Scholar
  23. 23.
    P. T. Emmerson and R. L. Willson, Pulse radiolysis of aqueous solutions thymine and triacetoneamine N-oxyl, J.Phys.Chem. 72: 3669–3671 (1968).CrossRefGoogle Scholar
  24. 24.
    R. L. Willson and P.T. Emmerson, Reaction of triacetoneamine-N-oxyl with radiation-induced radicals from DNA and from deoxyribonucleotides in aqueous solution, in “Radiation protection and sensitisation”, H.L. Moroson and M. Quintiliani, ed., Taylor and Francis, London (1970).Google Scholar
  25. 25.
    R. L. Willson, Pulse radiolysis studies on reaction of triacetoneamine-N-oxyl with radiation-induced free radicals, Trans.Farad.Soc. 67:3008–3019 (1971).CrossRefGoogle Scholar
  26. 26.
    P. T. Emmerson, E. M. Fielden, and I. Johansen, A possible steric factor in the sensitization of anoxic bacteria to X-rays by N-oxyl radicals, Int.J.Radiat.Biol. 19:229–236 (1971).CrossRefGoogle Scholar
  27. 27.
    K-D. Asmus, S. Nigam, and R. L. Willson, Kinetics of nitroxyl radical reactions: A pulse-radiolysis conductivity study, Int.J.Radiat. Biol. 29:211–219 (1976).CrossRefGoogle Scholar
  28. 28.
    S. Nigam, K-D. Asmus, and R. L. Willson, Electron transfer and addition reactions of free nitroxyl radicals with radiation induced radicals, Trans.Farad.Soc. 2324 (1976)Google Scholar
  29. 29.
    P. O’Neill, T. C. Jenkins, and E. M. Fielden, Interaction of oxygen and nitroxyls with radiation-induced radicals of DNA and related bases in aqueous solution, Rad.Res. 82:55–64 (1980).CrossRefGoogle Scholar
  30. 30.
    O. L. Harle and J. R. Thomas, Detection of free radical intermediates in the action of oxidation inhibitors, J.Amer.Chem.Soc. 79:2973–2974 (1957).CrossRefGoogle Scholar
  31. 31.
    I. T. Brownlie and K. U. Ingold, The inhibited autoxidation of styrene. Part VII. Inhibition by nitroxides and hydroxylamines, Can.J.Chem. 45:2427–2432 (1967).CrossRefGoogle Scholar
  32. 32.
    J. T. Weil, J. Van der Veen, H. S. Olcott, Stable nitroxides as lipid antioxidants, Nature 219:168–169 (1968).PubMedCrossRefGoogle Scholar
  33. 33.
    J. Van der Veen, J. T. Weil, T. E. Kennedy, H. S. Olcott, Aliphatic hydroxylamines as lipid antioxidants, Lipid 5:509–512 (1970).CrossRefGoogle Scholar
  34. 34.
    P. Howard-Flanders, Effect of nitric oxide on the radiosensitivity of bacteria, Nature 180:1191–1192 (1957).PubMedCrossRefGoogle Scholar
  35. 35.
    J. P. Lynch and P. Howard-Flanders, Effect of pretreatment with nitric oxide and N-ethylmaleimide on the level of sulphydryl compounds in bacteria and on their sensitivity to x-irradiation under anoxia, Nature 194:1247–1249 (1964).CrossRefGoogle Scholar
  36. 36.
    P. T. Emmerson and P Howard-Flanders, Preferential sensitization of anoxic bacteria to x-rays by organic nitroxide-free radicals, Radiation Research 26:54–62 (1965).PubMedCrossRefGoogle Scholar
  37. 37.
    P. T. Emmerson, Sensitization of anoxic recombination-deficient mutants of escherichia coli K12 to X-rays by triacetoneamine N-oxyl, Radiation Research 36:410–417 (1968).PubMedCrossRefGoogle Scholar
  38. 38.
    D. A. Agnew and L. D. Skarsgard, Sensitization of anoxic mammalian cells to radiation by triacetoneamine-N-oxyl. Effect of pre- and post-irradiation treatment, Radiation Research 51:97–109 (1972).PubMedCrossRefGoogle Scholar
  39. 39.
    N. M. Blackett, W. E. Wooliscroft, E. M. Fielden, and S. C. Lillicrap, Radiation modifying effect of the free radical norpseudopelletierene-N-oxyl on normal bone marrow stem cells in vitro and in vivo, Radiation Research 58:361–372 (1974).PubMedCrossRefGoogle Scholar
  40. 40.
    B. C. Cooke, E. M. Fielden, M. Johnson, and C. E. Smithen, Polyfunctional radiosensitizers, Radiation Research 65:152–162 (1976).PubMedCrossRefGoogle Scholar
  41. 41.
    B. A. Bridges, Sensitization of eschericha coli to gama radiation by N-ethyl maleimide, Nature 188:415 (1960).CrossRefGoogle Scholar
  42. 42.
    H. B. Hewitt and E R Blake, Studies of the toxicity and radiosensitising activity of triacetoneamine-N-oxyl in mice, Br.J.Radiol. 43:91–96 (1970).PubMedCrossRefGoogle Scholar
  43. 43.
    S. Hornsey, Sensitization of hypoxic cells in vivo with triacetoneamine N-oxyl (TAN), Int.J.Radiat.Biol. 22:91–94 (1972).CrossRefGoogle Scholar
  44. 44.
    W. Heubner, Giftung aromatischer Nitroverbingdungen, Arch.exp.Path. Pharmak. 205:310 (1948).Google Scholar
  45. 45.
    A. Stier and I. Reitz, Radical production of amine oxidation by liver microsomes, Xenobiotica 1:499–500 (1971).PubMedCrossRefGoogle Scholar
  46. 46.
    A. Stier, I. Reitz, and E. Sackmann, Radical accumulation in liver microsomal membranes during biotransformation of aromatic amines and nitro compounds, Arch. Pharmacol. 274:189–191 (1972).CrossRefGoogle Scholar
  47. 47.
    E. J. Rauckman, G. M. Rosen, and B. B. Kitchell, Superoxide Radical as an intermediate in the oxidation of hydroxylamines by mixed function amine oxidase, Mol. Pharmacol. 15:131–137 (1979).PubMedGoogle Scholar
  48. 48.
    G. M. Rosen and E. J. Rauckman, Formation and reduction of a nitroxide radical by liver microsomes, Biochem.Pharmacol. 26:675–678 (1977).PubMedCrossRefGoogle Scholar
  49. 49.
    R. A. Floyd, L. M. Soong, R. N. Walker, and M. Stuart, Lipid hydroperoxide activation of N-hydroxy-N-acetylaminofluorene via a free radical route, Cancer Res. 36:2761–2767 (1976).PubMedGoogle Scholar
  50. 50.
    R. A. Floyd, L. M. Soong, and P. L. Culver, Horseradish peroxidase/hydrogen peroxide-catalyzed oxidation of the carcinogen N-hydroxy-N-acetyl-2-aminofluorene as effected by cyanide and ascorbate, Cancer Res. 36:1510–1519 (1976).PubMedGoogle Scholar
  51. 51.
    R. A. Floyd, L. M. Soong, M. A. Stuart, and D. L. Reigh, Free radicals and carcinogenesis, Arch.Biochem.Biophys. 185:450–457 (1978).PubMedCrossRefGoogle Scholar
  52. 52.
    A. B. Sullivan, Electron spin resonance studies of a stable arylnitroso-olefin adduct free radical, J.Org.Chem. 31:2811–2817 (1966)CrossRefGoogle Scholar
  53. 53.
    J. W. Cramer, J. A. Miller, and E. C. Miller, N-hydroxylation: a new metabolic reaction observed in the rat with the carcinogen 2-acetylaminofluorene, J.Biol.Chem. 235:885–888 (1960).PubMedGoogle Scholar
  54. 54.
    H. Bartsch and E. Hecker, On the metabolic activation of the carcinogen N-hydroxy-N-2-acetylaminofluorene, Biochim.Biophys.Acta 567–578 (1971)Google Scholar
  55. 55.
    M. L. Thompson, L. Shuster, and K. Shaw, Cocaine-induced hepatic necrosis in mice, Biochem.Pharmacol. 28:2389–2395 (1979).PubMedCrossRefGoogle Scholar
  56. 56.
    M. A. Evans, Microsomal activation of N-hydroxy norcocaine to a reactive nitroxide, Toxicologist 1:1 (1981).Google Scholar
  57. 57.
    M. A. Evans and M. E. Johnson, The role of a reactive nitroxide radical in cocaine-induced hepatic necrosis, Fed.Proc. 40:638 (1981).Google Scholar
  58. 58.
    E. J. Rauckman, G. M. Rosen and J. Cavagnaro, Norcocaine nitroxide a potential hepatotoxic metabolite of cocaine, Molec.Pharmacol. 21: 458–463 (1982)Google Scholar
  59. 59.
    D. R. Blake, P. Winyard, J. Lunec, A. Williams, P. A. Good, S. J. Crewes, J. M. C. Gutteridge, D. Rowley, B. Halliwell, A. Cornish, and R. C. Hider, Cerebral and ocular toxicity induced by desferrioxamine, Quart.J.Med. 56:345–355 (1985).PubMedGoogle Scholar
  60. 60.
    N. F. Olivieri, J. R. Bungic, E. Chew, T. Gallant, R. Harrison, N. Keenan, W. Logan, D. Mitchell, G. Ricci, B. Skarf, M. Taylor, and M. Freedman, Visual and auditory neurotoxicity patients receiving subcutaneous desferrioxamine infusions, New England J. Med. 314: 869–873 (1986).CrossRefGoogle Scholar
  61. 61.
    R. L. Willson, Iron and hydroxyl free radicals in enzyme inactivation and cancer, in: NFCR Cancer Symposia “Free radicals, lipid peroxidation and cancer”, D. C. H. McBrien and T. F. Slater, ed., Academic Press, London (1982).Google Scholar
  62. 62.
    J. Butler and B. Halliwell, Reaction of iron-EDTA chelates with a superoxide radical, Arch.Biochem.Biophys. 218:174–178 (1982).PubMedCrossRefGoogle Scholar
  63. 63.
    J. Sinaceur, C. Ribiere, J. Nordmann, and R. Nordmann, Desferrioxamine, a scavenger of superoxide radicals? Biochem. Pharmacol. 33:1693–1694 (1984).PubMedCrossRefGoogle Scholar
  64. 64.
    B. Halliwell, Use of desferrioxamine as a “probe” for iron-dependent formation of hydroxyl radicals, Biochem.Pharmacol. 34:229–233 (1985).PubMedCrossRefGoogle Scholar
  65. 65.
    C. Ribiere, D. Sabourault, J. Sinaceur, R. Nordmann, C. Houce-Levin, and C. Ferradini, Radiolysis study of the reaction of desferrioxamine with O2 .- free radicals, in Superoxide and superoxide disrautase in chemistry, biology and medicine, G. Rotilio, ed., Elsevier Science, pp.47–49 (1986).Google Scholar
  66. 66.
    M. J. Davies, R. Donkor, C. A. Dunster, C. A. Gee, S. Jonas, and R. L. Willson, Desferrioxamine (Desferal) and superoxide free radicals: formation of an enzyme-damaging nitroxide, Biochem.J. 246:725–729 (1987).PubMedGoogle Scholar
  67. 67.
    R. Donkor and R. L. Willson, (1987) To be published.Google Scholar
  68. 68.
    G. M. Rosen, E. Finkelstein, and E. J. Rauckman, A method for the detection of superoxide in biological systems, Arch.Biochem. Biophys. 215:367–378 (1982).PubMedCrossRefGoogle Scholar
  69. 69.
    C. A. Gee, K. J. Kittridge, and R. L. Willson, Peroxy free radicals, enzymes and radiation damage: sensitisation of oxygen and protection by superoxide dismutase and antioxidants, Brit.J. Radiol. 58:251–256 (1985).PubMedCrossRefGoogle Scholar
  70. 70.
    R. L. Willson, Organic peroxy free radicals as ultimate agents in oxygen toxicity, in: “Oxidative stress”, Academic Press Inc. London (1985) pp. 41–72.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Robin L. Willson
    • 1
  1. 1.Department of BiochemistryBrunei University of West LondonUxbridge, MiddlesexUK

Personalised recommendations