Role of Active Oxygen in Paraquat and 1-Methyl-4-phenyl-1,2,3,6-Tetrahydropyridine (MPTP) Cytotoxicity

  • Martha S. Sandy
  • Donato Di Monte
  • Phyllis Cohen
  • Martyn T. Smith
Part of the Basic Life Sciences book series (BLSC, volume 49)


The cyclic tertiary amine l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) is a contaminant of the illicitly synthesized meperidine analog MPPP and is able to induce symptoms which closely resemble idiopathic Parkinsons disease (PD) in humans.1 This appears to be caused by a selective destruction of dopaminergic neurons in the zona compacta of the substantia nigra, as seen following the administration of MPTP to primates.2 Metabolic activation of the compound seems to be essential for its cytotoxic action.3 Mitochondrial monoamine oxidase type B converts MPTP to MPDP+, which is further oxidized to MPP+, the ultimate toxic metabolite.4


Glutathione Reductase Dopaminergic Neuron Redox Cycling Zona Compacta Selective Destruction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Langston, P. Ballard, J. W. Tetrud, and I. Irwin, Chronic parkinsonism in humans due to a product of meperidine-analog synthesis, Science 219:979 (1983).PubMedCrossRefGoogle Scholar
  2. 2.
    R. S. Burns, C. C. Chiueh, S. P. Markey, M. H. Ebert, D. M. Jacobowitz, and I. J. Kopin, A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Proc. Natl. Acad. Sci. USA 80:4545 (1983).Google Scholar
  3. 3.
    R. E. Heikkila, L. Manzino, F. S. Cabbat, and R. C. Duvoisin, Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by monoamine oxidase inhibitors, Nature (London) 311:467 (1984).CrossRefGoogle Scholar
  4. 4.
    K. Chiba, A.J. Trevor, and N. Castagnoli, Jr. Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase, Biochem. Biophys. Res. Commun. 120:547 (1984).CrossRefGoogle Scholar
  5. 5.
    A. Barbeau, M. Roy, T. Cloutier, L. Piasse, and S. Paris, Environmental and genetic factors in the etiology of Parkinson’s disease, in “Advances in Neurology,” vol. 45, M. D. Yahr and K. J. Bergman, eds., Raven Press, New York (1986).Google Scholar
  6. 6.
    J. S. Bus and J. E. Gibson, Paraquat: Model for oxidant-initiated toxicity, Environ. Health Perspec. 55:37 (1984).CrossRefGoogle Scholar
  7. 7.
    M. S. Sandy, P. Moldeus, D. Ross, and M. T. Smith, Role of redox cycling and lipid peroxidation in bipyridyl herbicide cytotoxicity. Studies with a compromised isolated hepatocyte model system, Biochem. Pharmacol. 35:3095 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    D. Di Monte, M. S. Sandy, G. Ekstrom, and M. T. Smith, Comparative studies on the mechanisms of paraquat and 1-methyl-4-phenylpyridine (MPP+) cytotoxicity, Biochem. Biophys. Res. Commun. 137:303 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    M. S. Sandy, P. Moldeus, D. Ross, and M. T. Smith, Cytotoxicity of the redox cycling compound diquat in isolated hepatocytes: Involvement of hydrogen peroxide and transition metals, Arch. Biochem. Biophys. 259:29–37 (1987).PubMedCrossRefGoogle Scholar
  10. 10.
    A. P. Autor, Reduction of paraquat toxicity by superoxide dismutase, Life Sci. 14:1309 (1974).PubMedCrossRefGoogle Scholar
  11. 11.
    M. D. Scott, S. R. Meshnick, and J. W. Eaton, Superoxide dismutaserich bacteria. Paradoxical increase in oxidant toxicity, J. Biol. Chem. 262:3640 (1987).PubMedGoogle Scholar
  12. 12.
    O. Elroy-Stein, Y. Bernstein, and Y. Groner, Overproduction of human Cu/Zn-superoxide dismutase in transfected cells: extenuation of paraquat-mediated cytotoxicity and enhancement of lipid peroxidation, EMBO J. 5:615 (1986).PubMedGoogle Scholar
  13. 13.
    A. C. Bagley, J. Krall, and R. E. Lynch, Superoxide mediates the toxicity of paraquat for Chinese hamster ovary cells, Proc. Natl. Acad. Sci. USA 83:3189 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    M. T. Smith, G. Ekstrom, M. S. Sandy, and D. Di Monte, Studies on the mechanism of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine cytotoxicity in isolated hepatocytes, Life Sci. 40:741 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    D. Di Monte, M. S. Sandy, and M. T. Smith, Increased efflux rather than oxidation is the mechanism of glutathione depletion by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), Biochem. Biophys. Res. Commun. 148:153 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    G. Ekstrom, D. Di Monte, M. S. Sandy, and M. T. Smith, Comparative toxicity and antioxidant activity of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine and its monoamine oxidase B-generated metabolites in isolated hepatocytes and liver microsomes, Arch. Biochem. Biophys. 255:14 (1987).PubMedCrossRefGoogle Scholar
  17. 17.
    W. J. Nicklas, I. Vyas, and R. E. Heikkila, Inhibition of NADH-1inked oxidation in brain mitochondria by 1-methyl-4-phenylpyridine, a metabolite of the neurotoxin, l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Life Sci. 36:2503 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    D. Di Monte, S. A. Jewell, G. Ekstrom, M. S. Sandy, and M. T. Smith, 1-methyl-4-phenyl-1,2.3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridine (MPP) cause rapid ATP depletion in isolated hepatocytes, Biochem. Biophys. Res. Commun. 137:310 (1986).PubMedCrossRefGoogle Scholar
  19. 19.
    D. M. Frank, P. K. Arora, J. L. Blumer, and I. M. Sayre, Model study on the bioreduction of paraquat, MPP+, and analogs. Evidence against a “redox cycling” mechanism in MPTP neurotoxicity, Biochem. Biophys. Res. Commun. 147:1095 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    T. L. Perry, V. W. Yong, R. A. Wall, and K. Jones, Paraquat and two endogenous analogs of the neurotoxic substance N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine do not damage dopaminergic neurostriatal neurons in the mouse, Neurosci. Lett. 69:285 (1986).PubMedCrossRefGoogle Scholar
  21. 21.
    H. Rollema, G. Damsma, A. S. Horn, J. B. De Vries and B. H. C. Westerink, Brain dialysis in conscious rats reveals an instantaneous massive release of striatal dopamine in response to MPP.+ Eur. J. Pharmacol. 126:345 (1986).PubMedCrossRefGoogle Scholar
  22. 22.
    S. H. Snyder and R. J. D’Amato, MPTP: A neurotoxin relevant to the pathophysiology of Parkinson’s disease, Neurology 36:250 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Martha S. Sandy
    • 1
  • Donato Di Monte
    • 1
  • Phyllis Cohen
    • 1
  • Martyn T. Smith
    • 1
  1. 1.Department of Biomedical and Environmental, Health Sciences, School of Public HealthUniversity of CaliforniaBerkeleyUSA

Personalised recommendations