Reduction of Nitroheterocyclic Drugs by Ascorbate and Catecholamines: A Possible Mechanism for the Neurotoxicity of Nitroheterocyclic Drugs

  • D. N. Ramakrishna Rao
  • Ronald P. Mason
Part of the Basic Life Sciences book series (BLSC, volume 49)


Nitroheterocyclic drugs such as 5-nitrofuran and 2- and 5-nitroimidazole derivatives are used as antimicrobial agents, some of which are selective for hypoxic cells.1 These compounds are also used as radiation sensitizers,2 and the 2-nitroimidazole derivative misonidazole was tested clinically. Unfortunately, a dose of 14 g/m2 needed to obtain sufficient tissue levels of this drug for sensitization produced a high incidence of peripheral neuropathy,3 hence this drug is of limited use.3 Nitrofurantoin and metronidazole also produce neuropathy.4,5 At lower doses nitrofurantoin is used as a urinary antiseptic,6 while metronidazole is used for amebic dysentery and for microbial infections of the vagina.7


Electron Spin Resonance Electron Spin Resonance Spectrum Nitro Compound Mandelic Acid Semiquinone Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Mason and P. D. Josephy, Free radical mechanism of nitroreductase, in: “Toxicity of Nitroaromatic Compounds,” D.E. Rickert, ed. Hemisphere Publishing Corp., Washington (1985).Google Scholar
  2. 2.
    A. Breccia and J. F. Fowler, “New Chemo and Radiosensitizing Drugs,” Edizioni Scientifiche (Lo Scarabeo), Bologna, Italy (1985).Google Scholar
  3. 3.
    T. Girinski, M. H. Pejovic, C. Haie, M. Bonnay, A. Gerbaulet, J. J. Mazeron, E. Malaise, and D. Chassagne, Radical irradiation and misonidazole in the treatment of advanced cervical carcinoma: Results of a phase II trial, Int. J. Radiat. Oncol. Biol. Phys. 11:1783 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    G. P. Rose, A. J. Dewar, and I. J. Stratford, A biochemical neurotoxicity study relating the neurotoxic potential of metronidazole and nitrofurantoin with misonidazole, Int. J. Radiat. Oncol. Biol. Phys. 8:781 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    C. Yiannikas, J. D. Pollard, and J. G. McLeod, Nitrofurantoin neuropathy, Aust. N. Z. J. Med. 11:400 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    W. M. Brutinel and W. J. Martin, II, Chronic nitrofurantoin reaction associated with T-lympocyte alveolitis, Chest 89:150 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    S. N. J. Moreno and R. Docampo, Mechanism of toxicity of nitro compounds used in the chemotherapy of trichomoniasis, Environ. Health Perspect. 64:199 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    P. D. Josephy, B. Palcic, and L. D. Skarsgard, Ascorbate-enhanced cytotoxicity of misonidazole, Nature 271:370 (1978).PubMedCrossRefGoogle Scholar
  9. 9.
    C. J. Koch, R. L. Howell, and J. E. Biaglow, Ascorbate anion potentiates cytotoxicity of nitro-aromatic compounds under hypoxic and anoxic conditions, Br. J. Cancer 39:321 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    R. P. Mason and J. L. Holtzman, The mechanism of microsomal and mitochondrial nitroreductase. Electron spin resonance evidence for nitroaromatic free radical intermediates, Biochemistry 14:1626 (1975).PubMedCrossRefGoogle Scholar
  11. 11.
    D. N. R. Rao, L. Harman, A. Motten, J. Schreiber, and R. P. Mason, Generation of radical anions of nitrofurantoin, misonidazole, and metronidazole by ascorbate, Arch. Biochem. Biophys. 255:419 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    D. N. R. Rao and R. P. Mason, Generation of nitro radical anions of some 5-nitrofurans, 2- and 5-nitroimidazoles by norepinephrine, dopamine, and serotonin, J. Biol. Chem. 262:11731 (1987).PubMedGoogle Scholar
  13. 13.
    P. Moldéus, J. Högberg, and S. Orrenius, Isolation and use of liver cells, Methods Enzym. 52:60 (1978).CrossRefGoogle Scholar
  14. 14.
    J. R. Fry, Preparation of mammalian hepatocytes, Methods Enzym. 77:130 (1981).CrossRefGoogle Scholar
  15. 15.
    J. M. Trifaró and J. Dworkind, A new and simple method for isolation of adrenal chromaffin granules by means of an isotonic density gradient, Anal. Biochem. 34:403 (1970).PubMedCrossRefGoogle Scholar
  16. 16.
    R. P. Mason, Assay of in situ radicals by electron spin resonance, Methods Enzymol. 105:416 (1984).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Motten and J. Schreiber, Correlation analysis of ESR spectra on a small computer, J. Magn. Reson. 67:42 (1986).Google Scholar
  18. 18.
    S. T. Omaye, J. D. Turnbull, and H. E. Sauberlich, Selected methods for the determination of ascorbic acid in animal cells, tissues, and fluids, Methods Enzymol. 62:3 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193:265 (1951).PubMedGoogle Scholar
  20. 20.
    H. Winkler and E. Westhead, The molecular organization of adrenal chromaffin granules, Neuroscience 5:1803 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    C-H. Kuo, N. Yonehara, F. Hata, and H. Yoshida, Subcellular distribution of ascorbic acid in rat brain, Jpn. J. Pharmacol. 28:789 (1978).PubMedCrossRefGoogle Scholar
  22. 22.
    C-H. Kuo and H. Yoshida, Ascorbic acid, an endogenous factor required for acetylcholine release from the synaptic vesicles, Jpn. J. Pharmacol. 30:481 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    C. Kalcheim, E. Bachar, D. Duksin, and Z. Vogel, Ciliary ganglia and spinal cord expiants release an ascorbate-like compound which stimulates proline hydroxylation and collagen formation in muscle cultures, Neurosci. Lett. 58:219 (1985).PubMedCrossRefGoogle Scholar
  24. 24.
    L. C. Tolbert, T. N. Thomas, L. D. Middaugh, and J. W. Zemp, Effect of ascorbic acid on neurochemical, behavioral, and physiological systems mediated by catecholamines, Life Sci. 25:2189 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    M. Chvapil, J. M. Kern, R. Misiorowski, and P. R. Weinstein, Endogenous antioxidants and rate of malondialdehyde formation in central and peripheral nervous systems, Exp. Neurol. 78:765 (1982).PubMedCrossRefGoogle Scholar
  26. 26.
    M. I. Sears, Vitamin C as a requirement for the storage of norepinephrine by the iris, Biochem. Pharmacol. 18:253 (1969).PubMedCrossRefGoogle Scholar
  27. 27.
    R. M. Kostrzewa and D. M. Jacobowitz, Pharmacological actions of 6-hydroxydopamine, Pharmacol. Rev. 26:199 (1974).PubMedGoogle Scholar
  28. 28.
    D. G. Graham, S. M. Tiffany, W. R. Bell, Jr., and W. F. Gutknecht, Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro, Mol. Pharmacol. 14:644 (1978).PubMedGoogle Scholar
  29. 29.
    A. Saner and H. Thoenen, Model experiments on the molecular mechanism of action of 6-hydroxydopamine, Mol. Pharmacol. 7:147 (1971).PubMedGoogle Scholar
  30. 30.
    J. Donaldson, D. McGregor, and F. LaBella, Manganese neurotoxicity: A model for free radical mediated neurodegeneration?, Can. J. Physiol. Pharmacol. 60:1398 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    A. Mäkinen, H. Savolainen, E. Lehtonen, and H. Vainio, Reduced sulfhydryl groups of rat neurons, glial cells and neurofilaments, Res. Commun. Chem. Pathol. Pharmacol 16:577 (1977).PubMedGoogle Scholar
  32. 32.
    A. Edström and H. Mattsson, Inhibition and stimulation of rapid axonal transport in vitro by sulfhydryl blockers, Brain Res. 108:381 (1976).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • D. N. Ramakrishna Rao
    • 1
  • Ronald P. Mason
    • 1
  1. 1.Laboratory of Molecular BiophysicsNational Institute of Environmental Health SciencesResearch Triangle ParkUSA

Personalised recommendations