Advertisement

Reduction of 5-Nitroimidazoles, Nitrofurazone, and 2,4-Dinitrophenol to their Free Radical Metabolites by Tritrichomonas Foetus Hydrogenosomes

  • Silvia N. J. Moreno
  • Roberto Docampo
Part of the Basic Life Sciences book series (BLSC, volume 49)

Abstract

Oxidative decarboxylation of pyruvate is catalyzed in trichomonads by pyruvate:ferredoxin oxidoreductase (PFO). This enzyme is localized in characteristic membrane-bound organelles that are termed hydrogenosomes on the basis of their biochemical characteristics. The main metabolic function of hydrogenosomes is the conversion of pyruvate to acetate via acetyl-CoA, accompanied by substrate level phosphorylation coupled to production of molecular hydrogen (Figure 1).

Keywords

Electron Spin Resonance Redox Cycling Spin Adduct Substrate Level Phosphorylation Thiamine Diphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Docampo, S.N.J. Moreno and R.P. Mason, Free radical intermediates in the reaction of pyruvate ferredoxin oxireductase in Tritrichomonas foetus hydrogenosomes, J. Biol. Chem. 262:12417 (1987).PubMedGoogle Scholar
  2. 2.
    S.N.J. Moreno and R. Docampo, Mechanism of toxicity of nitro compounds used in the chemotherapy of trichomoniasis, Environm. Hlth. Perspect. 64:199 (1985).CrossRefGoogle Scholar
  3. 3.
    S.N.J. Moreno, R.P. Mason, R.P.A. Muniz, F.S. Cruz and R. Docampo, Generation of free radicals from metronidazole and other nitroimidazoles by Tritrichomonas foetus, J. Biol. Chem. 258:4051 (1983).PubMedGoogle Scholar
  4. 4.
    S.N.J. Moreno, R.P. Mason and R. Docampo, Distinc reduction of nitro-furans and metronidazole to free radical metabolites by Tritrichomonas foetus hydrogenosomal and cytosolic enzymes, J. Biol. Chem. 259: 8252 (1984).PubMedGoogle Scholar
  5. 5.
    M. Müller, V. Nseka, S.R. Mack and D.G. Lindmark, Effect of 2,4-dini-trophenol on trichomonas and Entamoeba invadens, Comp. Biochem. Physiol. 64B:97 (1979).Google Scholar
  6. 6.
    M. Müller and D.G. Lindmark, Respiration of hydrogenosomes of Tritrichomonas foetus. II. Effect of CoA on pyruvate oxidation, vJ. Biol. Chem. 253:1215 (1978).Google Scholar
  7. 7.
    E. Finkelstein, G.M. Rosen, E.J. Rauckman and J. Paxton, Spin trapping of superoxide, Mol. Pharmacol. 16:676 (1979).PubMedGoogle Scholar
  8. 8.
    E. Finkelstein, G.M. Rosen and E.J. Rauckman, Production of hydroxyl radical by decomposition of superoxide spin-trapped adducts, Mol. Pharmacol. 21:262 (1982).PubMedGoogle Scholar
  9. 9.
    D.C. Borg, Electron spin resonance applied to free radicals of physiological, pharmacological or biochemical interest, in: “Biological Applications of Electron Spin Resonance,” H.M. Swartz, J.R. Bolton and D.C. Borg, eds., Wiley Interscience, New York, (1964).Google Scholar
  10. 10.
    D.G. Lindmark and M. Müller, Superoxide dismutase in the anerobic flagellates Tritrichomonas foetus and Monocercomonas sp., J. Biol. Chem. 249:4634 (1974).PubMedGoogle Scholar
  11. 11.
    B.A. Freeman and J.D. Crapo, Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J. Biol. Chem. 256, 10986–10992 (1981).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Silvia N. J. Moreno
    • 1
  • Roberto Docampo
    • 1
  1. 1.Instituto de MicrobiologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations