Adaptations to Plant Pro-Oxidants in a Phytophagous Insect Model: Enzymatic Protection from Oxidative Stress

  • Ronald S. Pardini
  • Chris A. Pritsos
  • Susan M. Bowen
  • Sami Ahmad
  • Gary J. Blomquist
Part of the Basic Life Sciences book series (BLSC, volume 49)


Adaptations in antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPOX) and glutathione reductase (GR) against superoxide free radicals (•O2-) and prevention of their cascade into cytotoxic H2O2 and hydroxyl radical (•OH) have been demonstrated in prokaryotes and vertebrates,1–3 but not yet in insects.4


Glutathione Reductase Antioxidant Enzyme Activity Musca Domestica Swallowtail Butterfly Inorganic Peroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. McCord, B. B. Keele, and I. Fridovich, An enzyme-based theory of obligate anaerobiosis, Proc. Natl. Acad. Sci. USA 68:1024 (1971).PubMedCrossRefGoogle Scholar
  2. 2.
    L. Frank, Prolonged survival after paraquat: Role of the lung antioxidant enzyme systems, Blochem. Pharmacol. 30:2319 (1981).CrossRefGoogle Scholar
  3. 3.
    C. A. Pritsos, L. M. Aaronson, and R. S. Pardini, Metabolic consequences of dietary 2,3-dichloro-l,4-napthoquinone (CNQ) in the rat: Alteration in anti-oxidant enzyme activities, Blochem. Pharmacol, 35:1131 (1986).CrossRefGoogle Scholar
  4. 4.
    R. A. Larson, Insect defenses against photoxic plant chemicals, J. Chem. Ecol. 12:859 (1986).CrossRefGoogle Scholar
  5. 5.
    P. C. Joshi and M. A. Pathak, Production of singlet oxygen and superoxide radicals by psoralens and their biological significance, Blochem. Biophys. Res. Commun. 112:638 (1983).CrossRefGoogle Scholar
  6. 6.
    H. M. Hassan and I. Fridovich, Intracellular production of superoxide radical and hydrogen peroxide by redox active compounds, Arch. Biochem. Blophys. 196:385 (1979).CrossRefGoogle Scholar
  7. 7.
    W. F. Hodnick, F. S. Rung, W. J. Roettger, C. W. Bohmont, and R. S. Pardini, Inhibition of mitochondrial respiration and production of toxic oxygen radicals by flavonoids: A structure-activity study, Biochem. Pharmacol. 35:2345 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Ahmad, L. B. Brattsten, C. A. Mullin, and S. J. Yu, Enzymes involved in the metabolism of plant allelochemicals, in: “Molecular Aspects of Insect-Plant Associations,” L. B. Brattsten and S. Ahmad, eds., Plenum Press, New York (1986).Google Scholar
  9. 9.
    S. Ahmad, C. A. Pritsos, S. M. Bowen, K. E. Kirkland, G. F. Blomquist, and R. S. Pardini, Activities of enzymes that detoxify superoxide anion and related toxic oxyradicals In Trlchoplusia ni, Arch. Insect Biochem. Physiol. 6:85 (1987).CrossRefGoogle Scholar
  10. 10.
    C. A. Pritsos, S. Ahmad, S. Bowen, G. J. Blomquist, and R. S. Pardini, Antioxidant enzyme activities in the southern armyworm, Spodoptera erldanla, Comp. Biochem. Physiol. C (in press).Google Scholar
  11. 11.
    J. M. McCord and I. Fridovich, Superoxide dismutase, B. Biol. Chem. 244:6049 (1969).Google Scholar
  12. 12.
    H. Aebi, Catalase in vitro, Methods Enzymol. 105:121 (1984).PubMedCrossRefGoogle Scholar
  13. 13.
    E. Racker, Glutathione reductase (liver and yeast), Methods Enzymol. 2:722 (1955).CrossRefGoogle Scholar
  14. 14.
    M. Berenbaum, Toxicity of a furanocoumarin to armyworms: A case of biosynthetic escape from insect herbivores, Science 201:532 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Berenbaum and P. Feeny, Toxicity of angular furanocourmarins to swallowtail butterflies: Escalation in a coevolutionary arms race? Science 212:927 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    R. G. Allen, K. J. Farmer, and R. S. Sohal, Effect of catalase inactivation on levels of inorganic peroxides, superoxide dismutase, oxygen consumption and life span in adult houseflies (Musca domestica), Blochem. J. 216:503 (1983).Google Scholar
  17. 17.
    R. G. Allen, K. J. Farmer, and R. S. Sohal, Effect of diamide administration on longevity, oxygen consumption, superoxide dismutase, catalase, inorganic peroxides and glutathione in the adult housefly, Musca domestica, Comp. Biochem. Physiol. 78C:31 (1984).Google Scholar
  18. 18.
    R. G. Allen, K. J. Farmer, R. K. Newton, and R. S. Sohal, Effects of paraquat administration on longevity, oxygen consumption, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, inorganic peroxides and glutathione In the adult housefly, Comp. Blochem. Physiol. 78C:283 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Ronald S. Pardini
    • 1
  • Chris A. Pritsos
    • 1
  • Susan M. Bowen
    • 1
  • Sami Ahmad
    • 1
  • Gary J. Blomquist
    • 1
  1. 1.Department of BiochemistryUniversity of Nevada RenoRenoUSA

Personalised recommendations