The Role of Glutathione Transferase in the Detoxication and Repair of Lipid and DNA Hydroperoxides

  • Brian Ketterer
  • David J. Meyer
  • Kia Hong Tan
Part of the Basic Life Sciences book series (BLSC, volume 49)


It is commonly accepted that cumulative effects of free radical damage to membranes and macromolecules are part of the aging process.1 Accumulation of damage takes place despite the presence in the cell of a number of protective mechanisms, including those which inhibit oxygen-centred free radical formation, detoxify active oxygen species and repair free radical damage. Peroxidation of membrane lipids and of DNA are two toxic consequences of the action of oxygen-centred free radicals,2 and in the present communication we discuss the significance of GSH transferase activity for their detoxication and repair. Attention will be drawn to a rarely studied isoenzyme from the rat, GSH transferase 5–5,3 which is very active in reducing DNA hydroperoxides and appears to be a major form in the nucleus.


Glutathione Transferase Free Radical Damage Fatty Acid Hydroperoxide Methyl Uracil Phospholipid Hydroperoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.N. Ames, Dietary carcinogens and anticarcinogens: Oxygen radicals and degenerative diseases, Science 221:1256 (1983).PubMedCrossRefGoogle Scholar
  2. 2.
    K.H. Tan, D.J. Meyer, B. Coles, N. Gillies, and B. Ketterer, Detoxication of peroxidized DNA by GSH transferases, Biochem. Soc. Trans. 15:628 (1987).Google Scholar
  3. 3.
    D.J. Meyer, L.G. Christodoulides, K.H. Tan, and B. Ketterer, Isolation, properties and tissue distribution of rat GSH transferase E, FEBS Lett. 173:327 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    R.A. Lawrence and R.F. Burk, Species, tissue and subcellular distribution of non Se-dependent GSH peroxidase activity, J. Nutr. 108:211 (1978).PubMedGoogle Scholar
  5. 5.
    K.H. Tan, D.J. Meyer, and B. Ketterer, Inhibition of lipid peroxidation in rat liver microsomes by GSH S-transferase B, Biochem. Soc. Trans. 11:308 (1983).Google Scholar
  6. 6.
    K.H. Tan, D.J. Meyer, J. Belin, and B. Ketterer, Inhibition of microsomal lipid peroxidation by GSH transferases B and AA: role of phospholipase A2, Biochem. J. 220:243 (1984).PubMedGoogle Scholar
  7. 7.
    A. Sevanian, S. F. Muakkassah-Kelly, and S. Montestruque, The influence of phospholipase A2 and glutathione peroxidase on the elimination of membrane lipid peroxides, Arch. Biochem. Biophys. 233:441 (1983).CrossRefGoogle Scholar
  8. 8.
    A. Grossman and A. Wendel, Activity of the selenoenzyme glutathione peroxidase with enzymatically hydroperoxidized phospholipids, Eur. J. Biochem. 135:549 (1983).CrossRefGoogle Scholar
  9. 9.
    F.J.G.M. van Kuijk, A. Sevanian, G.J. Handelman, and E.A. Dratz, A new role for phospholipase A2: protection of membranes from lipid peroxidation damage, Trends in Biochem. Sci. 12:31 (1987).CrossRefGoogle Scholar
  10. 10.
    W.A. Pryor, The role of free radical reactions in biological systems in: “Free Radicals in Biology,” W.A. Pryor, ed., Academic Press, New York (1976).Google Scholar
  11. 11.
    B. Mannervik, P. Alin, C. Guthenberg, H. Jensson, and M. Warholm, Glutathione transferases and the detoxication of products of oxidative metabolism in: “Microsomes and Drug Oxidations,” A.R. Boobis, J. Caldwell, F. DeMatteis and C.R. Elcombe, eds., Taylor & Francis, London, (1985).Google Scholar
  12. 12.
    H. Jensson. C. Guthenberg, P. Alin, and B. Mannervik, Rat glutathione transferase 8–8, an enzyme efficiently detoxifying 4-hydroxyalk-2-enals, FEBS Letts. 203:207 (1986).CrossRefGoogle Scholar
  13. 13.
    H.F. Thomas, R.M. Harriott, B. Hahn, and S.Y. Wang, Thymine hydroperoxide as a mediator in ionising radiation mutagenesis, Nature 259:341 (1976).PubMedCrossRefGoogle Scholar
  14. 14.
    T.H. Rushmore, Y.P. Lin, and A.K. Ghoshal, Rapid lipid peroxidation in the nuclear fraction of rat liver induced by a diet deficient in choline and methionine, Cancer Lett. 24:251 (1984).PubMedCrossRefGoogle Scholar
  15. 15.
    K.H. Tan, D.J. Meyer, and B. Ketterer, Lipid peroxidation in choline-methionine deficiency, Free Rad. Res. Comms. 3:273 (1986).CrossRefGoogle Scholar
  16. 16.
    T.H. Rushmore, E. Farber, A.K. Ghoshal, S. Parodi, M. Pela, and M. Taningher, A choline-devoid diet, carcinogenic in the rat, induces DNA damage and repair, Carcinogenesis 7:1677 (1986).PubMedCrossRefGoogle Scholar
  17. 17.
    M.C. Hollstein, P. Brooks, S. Linn, and B.N. Ames, Hydroxymethyluracil DNA glycosylase in mammalian cells, Proc. Natl. Acad. Sei. USA. 81:4003 (1984).CrossRefGoogle Scholar
  18. 18.
    B.N. Ames, Carcinogens and anticarcinogens in: “Antimutagenesis and Anticarcinogenesis Mechanisms,” D.M. Shankel, P.E. Hartman, T. Kada, and A. Hollaender, eds., Plenum Press, New York (1985).Google Scholar
  19. 19.
    A-K Ostlund Farrants, D.J. Meyer, B. Coles, C. Southan, A. Aitkin, P.J. Johnson, and B. Ketterer, The separation of glutathione transferase subunits by using reverse-phase high-pressure liquid chromatography. Biochem. J. 245:423 (1987).PubMedGoogle Scholar
  20. 20.
    J.L. Swinehart, W.S. Lin, and P.A. Cerutti, Gamma-ray induced damage in thymine in mononucleotide mixtures and in single and double stranded DNA, Radiat. Res. 58:166 (1974).PubMedCrossRefGoogle Scholar
  21. 21.
    K. Frankel, M.S. Goldstein, and G.W. Teebor, Identification of the cis-thymine glycol moiety in chemically oxidized and gammairradiated deoxy-ribonucleic acid by high-pressure liquid chromatography, Biochemistry 20:7566 (1981).CrossRefGoogle Scholar
  22. 22.
    K. Frankel, A. Cummings, J. Solomon, J. Cadet, J.J. Steinberg, and G.W. Teebor, Quantitative determination of the 5-(hydroxymethyl) uracil moiety in the DNA of gamma-irradiated cells, Biochemistry 24:4527 (1985).CrossRefGoogle Scholar
  23. 23.
    C. von Sonntag, “The Chemical Basis of Radiation Biology”, Taylor and Francis, London, (1987).Google Scholar
  24. 24.
    R. Cathcart, E. Schwiers, R.L. Saul, and B.N. Ames, Thymine glycol and thymidine glycol in human and rat urine: A possible assay for DNA damage, Proc. Natl. Acad. Sci. USA. 81:5633 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Brian Ketterer
    • 1
  • David J. Meyer
    • 1
  • Kia Hong Tan
    • 1
  1. 1.Department of BiochemistryUniversity College and Middlesex School of MedicineLondonUK

Personalised recommendations