Advertisement

Catalases—With and Without Heme

  • Wayne F. BeyerJr.
  • Irwin Fridovich
Part of the Basic Life Sciences book series (BLSC, volume 49)

Abstract

Catalases (H2O2:H2O2 oxidoreductase; EC 1.11.1.6) are metalloenzymes that catalyze the elimination of H2O2 according to the equation: Catalases, together with superoxide dismutases and peroxidases, provide aerobic cells with a defense system for removal of superoxide radical and of hydroperoxides. H2O2 is a cellular toxicant in its own right. Considerable interest in the production of hydroxyl radical by the reduction of H2O2 (equation 2) mediated by transition metals or other cellular reductants has arisen.

Keywords

Catalase Activity Lactobacillus Plantarum Thermophilic Bacterium Binuclear Cluster Bovine Liver Catalase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Poole, B. S. Baines, and C. A. Appleby, Haemoprotein b-590 (Escherichia coli), a reducible catalase and peroxidase: Evidence for its close relationship to hydroperoxidase I and a cytochrome alb preparation, J. Gen. Microbiol. 132:1525 (1986).PubMedGoogle Scholar
  2. 2.
    A. Claiborne, D. Malinowski, and I. Fridovich, Purification and characterization of hydroperoxidase II of Escherichia coli B, J. Biol. Chem. 254:11664 (1979).PubMedGoogle Scholar
  3. 3.
    A. Claiborne, and I. Fridovich, Purification of the o-dianisidine peroxidase from Escherichia coli B. Physicochemical characteri zation and analysis of its dual catalatic and peroxidatic activities, J. Biol. Chem. 254:4245 (1979).PubMedGoogle Scholar
  4. 4.
    P. C. Loewen and J. Switala, Purification and characterization of catalase HPII from Escherichia coli K12, Biochem. Cell. Biol. 64:638 (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Pegg, D. Crane, and C. Masters, Confirmation that catalase is a glycoprotein, Biochem. Int. 12:831 (1986).PubMedGoogle Scholar
  6. 6.
    S. Morikofer-Zwey, M. Cantz, H. Kaufman, J. P. von Wartburg, and H. Aebi, Heterogeneity of erythrocyte catalase. Correlations between sulfhydryl group content, chromatographic and electrophoretic properties. Eur. J. Biochem. 11:49 (1969).CrossRefGoogle Scholar
  7. 7.
    G. R. Schonbaum and B. Chance, Catalase, in: “The Enzymes,” vol. 13, P. Boyer, ed., Academic Press, New York (1976).Google Scholar
  8. 8.
    H. Furuta, A. Hachimori, Y. Ohta, and T. Samejima, Dissociation of bovine liver catalase into subunits on acetylation, J. Biochem. 76:481 (1974).PubMedGoogle Scholar
  9. 9.
    H. Aebi, S. R. Wyss, B. Schorz, and F. Skvaril, Heterogeneity of erythrocyte catalase. II. Isolation and characterization of normal and variant erythrocyte catalase and their subunits, Eur. J. Biochem. 48:137 (1974).PubMedCrossRefGoogle Scholar
  10. 10.
    D. Dolphin, A. Forman, D. C. Borg, J. Fajer, and R. H. Felton, Compounds I of catalase and horseradish peroxidase: π-cation radicals, Proc. Natl. Acad. Sci. USA 68:614 (1971).PubMedCrossRefGoogle Scholar
  11. 11.
    B. Chance, An intermediate compound in the catalase-hydrogen peroxide reaction, Acta Chem. Scand. 1:236 (1947).CrossRefGoogle Scholar
  12. 12.
    E. Margoliash and A. Novogrodsky. A study of the inhibition of catalase by 3-amino-l:2:4-triazole, Biochem. J. 68:468 (1958).PubMedGoogle Scholar
  13. 13.
    E. G. DeMaster, B. Redfern, F. N. Shirota, and H. T. Nagasana, Differential inhibition of rat tissue catalase by cyanamide, Biochem. Pharmacol. 35:2081 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    D. Darr and I. Fridovich, Inhibition of catalase by 3,3′-diamino- benzidine, Biochem. J. 226:781 (1985).PubMedGoogle Scholar
  15. 15.
    Y. Kono and I. Fridovich, Superoxide radical inhibits catalase, J. Biol. Chem. 257:5751 (1982).PubMedGoogle Scholar
  16. 16.
    N. Shimizu, K. Kobayashi, and K. Hayashi, The reaction of superoxide radical with catalase. Mechanism of the inhibition of catalase by superoxide radical, J. Biol. Chem. 259:4414 (1984).PubMedGoogle Scholar
  17. 17.
    H. N. Kirkman and G. F. Gaetani, Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH, Proc. Natl. Acad. Sci. USA 81:4343 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    H. Aebi, Catalase in vitro, Meth. Enzvmol. 105:121 (1984).CrossRefGoogle Scholar
  19. 19.
    H. N. Kirkman, S. Galiano, and G. F. Gaetani, The function of catalase-bound NADH. J. Biol. Chem. 262:660 (1987).PubMedGoogle Scholar
  20. 20.
    W. R. Melik-Adamyan, V. V. Barynin, A. A. Vagin, V. V. Borisov, B. K. Vainshtein, I. Fita, M. R. Murthy, and M. G. Rossman, Comparison of beef liver and Pénicillium vitale catalases. J. Mol. Biol. 188:63 (1986).PubMedCrossRefGoogle Scholar
  21. 21.
    B. K. Vainshtein, W. R. Melik-Adamyan, V. V. Barynin, A. A. Vagin, A. I. Grebenko, V. V. Borisov, K. S. Bartels, I. Fita, and M. G. Rossman, Three-dimensional structure of catalase from Penicillium vitale at 2.0A resolution, J. Mol. Biol. 188:49 (1986).PubMedCrossRefGoogle Scholar
  22. 22.
    E. A. Delwiche, Catalase of Pediococcus cerevisiae, J. Bacteriol. 81:416 (1961).PubMedGoogle Scholar
  23. 23.
    M. A. Johnston and E. A. Delwiche, Catalase of the Lactobacillaceae, J. Bacteriol. 83: 936 (1962).PubMedGoogle Scholar
  24. 24.
    D. Jones, D. H. Diebel, and C. F. Niven, Jr., Catalase activity of two Streptococcus feacalis strains and its enhancement by aerobiosis and added cations, J. Bacteriol. 88:602 (1964).PubMedGoogle Scholar
  25. 25.
    M. A. Johnston and E. A. Delwiche, Distribution and characteristics of the catalases of Lactobacillaceae, J. Bacteriol. 90:347 (1965).PubMedGoogle Scholar
  26. 26.
    M. A. Johnston and E. A. Delwiche, Isolation and characterization of the cyanide resistant and azide-resistant catalase of Lactobacillus plantarum, J. Bacteriol. 90:352 (1965).PubMedGoogle Scholar
  27. 27.
    Y. Kono and I. Fridovich, Isolation and characterization of the pseudocatalase of Lactobacillus plantarum. A new manganese-containing enzyme, J. Biol. Chem. 258:6015 (1983).PubMedGoogle Scholar
  28. 28.
    G. S. Allgood and J. J. Perry, Characterization of a manganese-containing catalase from the obligate Thermophile thermoleophilum album, J. Bacteriol. 168:563 (1986).PubMedGoogle Scholar
  29. 29.
    V. V. Barynin and A. I. Grebenko, T-catalase-a nonheme catalase of the extremely thermophilic bacterium Thermus thermophilus HB8, Dokl. Acad. Nauk. SSSR 286:461 (1986).Google Scholar
  30. 30.
    W. F. Beyer, Jr., and I. Fridovich, Pseudocatalase from Lactobacillus plantarum: evidence for a homopentameric structure containing two atoms of manganese per subunit, Biochem. 24:6460 (1985).CrossRefGoogle Scholar
  31. 31.
    Y. Kono and I. Fridovich, Functional significance of manganese catalase in Lactobacillus plantarum, J. Bacteriol. 155:742 (1983).PubMedGoogle Scholar
  32. 32.
    Y. Kono and I. Fridovich, Inhibition and reactivation of Mn-catalase. Implications for valence changes at the active site manganese, J. Biol. Chem. 258:13646 (1983).PubMedGoogle Scholar
  33. 33.
    G. S. Allgood and J. J. Perry, Paraquat toxicity and effect of hydrogen peroxide on Thermophilic bacteria. J. Free Rad. Biol. Med. 1:233 (1985).CrossRefGoogle Scholar
  34. 34.
    W. F. Beyer, Jr., unpublished results.Google Scholar
  35. 35.
    F. S. Archibald and I. Fridovich, Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. J. Bacteriol. 145:442 (1981).PubMedGoogle Scholar
  36. 36.
    F. S. Archibald and I. Fridovich, Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria, J. Bacteriol. 146: 928 (1981).PubMedGoogle Scholar
  37. 37.
    B. Chance, The composition of catalase-peroxide complexes. J. Biol. Chem. 179:1311 (1949).PubMedGoogle Scholar
  38. 38.
    G. E. Means and R. E. Feeney, “Chemical Modification of Proteins” Holden-Day, San Francisco, CA (1971).Google Scholar
  39. 39.
    G. E. Davies and G. R. Stark, Use of dimethyl suberimidate, a cross-linking reagent in studying the subunit structure of oligomeric proteins, Proc. Natl. Acad. Sci. USA 66:651 (1970).PubMedCrossRefGoogle Scholar
  40. 40.
    Y. Kono, Mn-catalase of Lactobacillus plantarum: inhibition by carbonyl reagents, in “Superoxide and Superoxide Dismutase in Chemistry, Biology and Medicine,” G. Rotilio, ed., Elsevier (1986), p. 231.Google Scholar
  41. 41.
    B. B. Keele, Jr., J. M. McCord, and I. Fridovich, Superoxide dismutase from Escherichia coli B. A new manganese containing enzyme. J. Biol. Chem. 245:6176 (1970).PubMedGoogle Scholar
  42. 42.
    J. J. Villafranca, F. J. Yost, Jr., and I. Fridovich, Magnetic resonance studies studies of manganese(III) and iron(III) superoxide dismutase. Temperature and frequency dependence of proton relaxation rates of water, J. Biol. Chem. 249:3532 (1974).PubMedGoogle Scholar
  43. 43.
    W. F. Beyer, Jr., J. J. Villafranca, and I. Fridovich, unpublished results.Google Scholar
  44. 44.
    T. A. Kent, E. Munck, R. W. Dunham, W. F. Filter, K. L. Findling, T. Yoshida, and J. A. Fee, Mossbauer study of a bacterial cytochrome oxidase: cytochrome c1aa3 from Thermus thermophilus, J. Biol. Chem. 257:12489 (1982).PubMedGoogle Scholar
  45. 45.
    S. V. Khangulov, V. V. Barynin, V. R. Melik-Adamyan, A. I. Grebenko, N. V. Voevodskaya, D. L. A. Blynmenfel, S. N. Dobryakov, and V. B. Il-Yasova, EPR study of T-catalase from Thermus thermophilus, Bioorq. Khim. 12:741 (1986).Google Scholar
  46. 46.
    V. V. Barynin, A. A. Vagin, V. R. Melik-Adamyan, A. I. Grebenko, S. V. Khangulov, A. N. Popov, M. E. Andrianonva, and B. K. Vainshtein, Three-dimensional structure of the T-catalase with a 3A resolution, Dokl. Acad. Nauk. SSSR 288:877 (1986).Google Scholar
  47. 47.
    J. E. Sheats, R. S. Czernuszewicz, G. C. Dismukes, A. L. Rheingold, V. Petroleas, J. Stubbe, W. H. Armstrong, R. H. Beer, and S. J. Lippard, Binuclear manganese(III) complexes of potential biological significance. J. Amer. Chem. Soc. 109:1435 (1987).CrossRefGoogle Scholar
  48. 48.
    K. Wrighardt, V. Bossek, J. Bonvoisin, P. Beauvillain, J. Girerd, B. Nuber, J. Weiss, and J. Heinze, Dinuclear manganese (II, III, IV) model complexes for the active center of the metalloprotein photosystemll: synthesis, magnetism, and crystal structure of [L MnIII (μ-0)(μ-CH3CO2)2 MnIVL][C104], Anqew. Chem. Int. Ed. 25:1030 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Wayne F. BeyerJr.
    • 1
  • Irwin Fridovich
    • 1
  1. 1.Department of BiochemistryDuke University Medical CenterDurhamUSA

Personalised recommendations