Advertisement

Bacterial Superoxide Dismutases

  • Howard M. Steinman
Part of the Basic Life Sciences book series (BLSC, volume 49)

Abstract

Superoxide dismutase (SOD) has played a major role in establishing the biological relevance of oxyradicals. To many oxyradical researchers, “superoxide dismutase” connotes a copper-zinc SOD (CuZnSOD), the first dismutase to be purified and the form of prime interest clinically. However, superoxide dismutases containing manganese or iron as cofactor are also known and are widespread among bacteria. The manganese and iron SODs (MnSOD and FeSOD) are homologous in primary and three-dimensional structure and have clearly evolved from a common ancestor.2,3 Although structurally homologous, the Mn- and FeSODs are functionally distinct. Only in rare instances can the endogeneous Mn (or Fe) be replaced by Fe (or Mn) with retention of catalytic activity. The Mn- and FeSODs are further distinguished in their distribution among bacterial species. Strict anaerobes contain one SOD, an FeSOD. Bacterial aerobes usually contain an MnSOD or both Mn- and FeSODs. (The MnSOD is also widely found in eukaryotes. The FeSOD is also found in primitive eukaryotes and some green plants. Distributions of the Mn- and FeSODs among eukaryotes have been discussed elsewhere.1,4)

Keywords

Superoxide Dismutase Leader Sequence Oxygen Toxicity Strict Anaerobe Iron SODs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. M. Steinman, Superoxide dismutases: Protein chemistry and structure-function relationships, in “Superoxide Dismutase, Volume I”, L. W. Oberley, ed., CRC Press, Boca Raton (1982).Google Scholar
  2. 2.
    W. C. Stallings, K. A. Pattridge, and M. L. Ludwig, Manganese and iron superoxide dismutases are structural homologs, J. Biol. Chem. 259:10695 (1984).PubMedGoogle Scholar
  3. 3.
    D. Barra, M. E. Schinina, W. H. Bannister, J. V. Bannister, and F. Bossa, The primary structure of iron-superoxide dismutase from Photobacterium leiognathi, J. Biol. Chem. 262:1001 (1987).PubMedGoogle Scholar
  4. 4.
    J. Kwiatowski, Comparison of chloroplast and cytosolic Cu/Zn super-oxide dismutase isozymes from tomato in relation to superoxide dismutase evolution, Isozymes: Curr. Top. Biol. Med. Res. 15:21 (1987).Google Scholar
  5. 5.
    I. Fridovich, Superoxide radical: An endogenous toxicant, Ann. Rev. Pharmacol. Toxicol. 23:239 (1983).CrossRefGoogle Scholar
  6. 6.
    A. Carlioz and D. Touati, Isolation of superoxide dismutase mutants in Escherichia coli: Is superoxide dismutase necessary for aerobic life?, EMBO J. 5:623 (1986).PubMedGoogle Scholar
  7. 7.
    S. B. Farr, R. D’Ari, and D. Touati, Oxygen-dependent mutagenesis in Escherichia coli lacking superoxide dismutase, Proc. Natl. Acad. Sci. (USA) 83:8268 (1986).CrossRefGoogle Scholar
  8. 8.
    L. Britton and I. Fridovich, Intracellular localization of the superoxide dismutases of Escherichia coli: A reevaluation, J. Bacteriol. 131:815 (1977).PubMedGoogle Scholar
  9. 9.
    D. E. Ose and I. Fridovich, Superoxide dismutase. Reversible removal of manganese and its substitution by cobalt, nickel, or zinc, J. Biol. Chem. 251:1217 (1976).PubMedGoogle Scholar
  10. 10.
    M. E. Schinina, L. Maffey, D. Barra, F. Bossa, K. Puget, and A. M. Michelson, The primary structure of iron superoxide dismutase from Escherichia coli, FEBS Letters 221:87 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Carlioz, M. L. Ludwig, W. C. Stallings, J. A. Fee, H. M. Steinman, and D. Touati, Iron superoxide dismutase: Nucleotide sequence of the gene fron E. coli K12 and correlations with crystal structure, J. Biol. Chem., in press.Google Scholar
  12. 12.
    S. Sato, Y. Nakada, and K. Nakazawa-Tomizawa, Amino acid sequence of a tetrameric, manganese superoxide dismutase from Thermus thermophilus HB8, Biochim. Biophys. Acta 912:178 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    B. Meier, D. Barra, I. F. Bossa, L. Calabrese, and G. Rotilio, Synthesis of either Fe- or Mn-superoxide dismutase with an apparently identical protein moiety by an anaerobic bacterium dependent on the metal supplied, J. Biol. Chem. 257:13977 (1982).PubMedGoogle Scholar
  14. 14.
    M. E. Martin, B.R. Byers, M. O. J. Olson, M. L. Salin, J. E. L. Arceneauz, and C. Tolbert, A Streptococcus mutans superoxide dismutase that is active with either manganese or iron as a cofactor, J. Biol. Chem. 261:9361 (1986).PubMedGoogle Scholar
  15. 15.
    C. D. Pennington and E. M. Gregory, Isolation and reconstitution of iron- and manganese-containing superoxide dismutase from Bacteroides thetaiotaomicron, J. Bacteriol. 166:528 (1986).PubMedGoogle Scholar
  16. 16.
    K. Puget and A. M. Michelson, Isolation of a new copper-containing superoxide dismutase, bacteriocuprein, Biochem. Biophys. Res. Commun. 58:830 (1974).CrossRefGoogle Scholar
  17. 17.
    G.-J. Steffens, J. V. Bannister, W. H. Bannister, L. Flohe, W. A. Gunzler, S.-M. A. Kim, and F. Otting, The primary structure of Cu-Zn superoxide dismutase from Photobacterium leiognathi: Evidence for a separate evolution of Cu-Zn superoxide dismutase in bacteria, Hoppe-Seyler’s Z. Physiol. Chem. 364:675 (1983).CrossRefGoogle Scholar
  18. 18.
    H. M. Steinman, Bacteriocuprein superoxide dismutase of Photobac-terium leiognathi. Isolation and sequence of the gene and evidence for a precursor form, J. Biol. Chem. 262;1882 (1987).PubMedGoogle Scholar
  19. 19.
    H. M. Steinman, Copper-zinc superoxide dismutase from Caulobacter crescentus CB15. A novel bacteriocuprein form of the enzyme, J. Biol. Chem. 257:10283 (1982).PubMedGoogle Scholar
  20. 20.
    H. M. Steinman, unpublished data.Google Scholar
  21. 21.
    J. A. Tainer and E. D. Getzoff, unpublished data.Google Scholar
  22. 22.
    J. P. Martin, Jr. and I. Fridovich, Evidence for a natural gene transfer from the ponyfish to its bioluminescent bacterial symbiont Photobacterium leiognathi, J. Biol. Chem. 256:6080 (1981).PubMedGoogle Scholar
  23. 23.
    J. V. Bannister, W. H. Bannister, and G. Rotilio, Aspects of the structure, function, and applications of superoxide dismutase, CRC Critical Rev. Biochem. 22:11 (1987).CrossRefGoogle Scholar
  24. 24.
    H. M. Steinman, Chemical aspects of structure, function, and evolution among superoxide dismutases: The general scenario and the bacteriocuprein exceptions, in “Oxy Radicals and Their Scavenger Systems. Volume I, Molecular Aspects,” G. Cohen and R. A. Greenwald, eds., Elsevier Biomedical, New York (1983).Google Scholar
  25. 25.
    S. L. Marklund, L. Tibell, K. Hjalmarsson, G. Skogman, A. Engstrom, and T. Edlund, Sequence of complementary DNA encoding human extracellular-superoxide dismutase and production of recombinant enzyme, in present volume.Google Scholar
  26. 26.
    K. Hjalmarsson, S. L. Marklund, A. Engstrcm, and T. Edlund, Isolation and sequence of complementary DNA encoding human extracellular superoxide dismutase, Proc. Natl. Acad. Sci. (USA), 84:6340 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Howard M. Steinman
    • 1
  1. 1.Department of BiochemistryAlbert Einstein College of MedicineBronxUSA

Personalised recommendations