Probing Enzyme-Substrate Recognition and Catalytic Mechanism in Cu,Zn Superoxide Dismutase

  • John A. Tainer
  • Robert A. Hallewell
  • Victoria A. Roberts
  • Hans E. Parge
  • Elizabeth D. Getzoff
Part of the Basic Life Sciences book series (BLSC, volume 49)


Superoxide dismutase (SOD) is a ubiquitous enzyme of aerobic organisms that protects against the toxic effects of dioxygen metabolism. SOD catalyzes the dismutation of the superoxide radical, O- 2, to molecular oxygen and hydrogen peroxide through the alternate reduction and oxidation of the active site metal ion (Cu, Mn, or Fe)1: Cu, Zn SOD occurs almost entirely in eukaryotic cells, while Mn or Fe SODs occur predominantly in prokaryotes and mitochondria. The catalytic rate of SOD is very rapid (2 × 109 M-1sec-1),2 suggesting the evolution of an optimal active site for the recognition and chemical catalysis of the substrate by the enzyme. This remarkably high catalytic rate makes the enzyme a simple model system in which to study the role of electrostatic forces in molecular recognition.


Superoxide Dismutase Complete Amino Acid Sequence Zinc Superoxide Dismutase CuZn Superoxide Dismutase High Catalytic Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Fridovich, Superoxide and superoxide dismutase, in: “Advances in Inorganic Biochemistry,” G. L. Eichhorn and L. G. Marzilli, eds., Elsevier/North Holland, New York (1979).Google Scholar
  2. 2.
    D. Klug, J. Rabani, and I. Fridovich, A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis, J. Biol. Chem. 247:4839 (1972).PubMedGoogle Scholar
  3. 3.
    J. A. Tainer, E. D. Getzoff, J. S. Richardson, and D. C. Richardson, Structure and mechanism of copper, zinc superoxide dismutase, Nature 306:284 (1983).PubMedCrossRefGoogle Scholar
  4. 4.
    J. A. Tainer, E. D. Getzoff, K. M. Beem, J. S. Richardson, and D. C. Richardson, Determination and analysis of the 2À structure of copper, zinc superoxide dismutase, J. Mol. Biol. 160:181 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    J. S. Richardson, K. A. Thomas, B. H. Rubin, and D. C. Richardson, Crystal structure of bovine Cu, Zn superoxide dismutase at 3À resolution: Chain tracing and metal ligands, Proc. Natl. Acad. Sci. U.S.A. 72:1349 (1975).PubMedCrossRefGoogle Scholar
  6. 6.
    D. P. Malinowski and I. Fridovich, Chemical modification of arginine at the active site of the bovine erythrocyte superoxide dismutase, Biochemistry 18:5909 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    D. Barra, F. Martini, J. V. Bannister, M. E. Schininà, G. Rotilio, W. H. Bannister, and F. Bossa, The complete amino acid sequence of human Cu/Zn superoxide dismutase, FEBS Lett. 120:53 (1980).PubMedCrossRefGoogle Scholar
  8. 8.
    H. M. Steinman, V. R. Naik, J. L. Abernethy, and R. L. Hill, Bovine erythrocyte superoxide dismutase. Complete amino acid sequence, J.Biol. Chem. 249:7326 (1974).Google Scholar
  9. 9.
    H. M. Steinman, The amino acid sequence of copper-zinc superoxide dismutase from bakers’ yeast, J. Biol. Chem. 255:6758 (1980).PubMedGoogle Scholar
  10. 10.
    J. R. Jabusch, D. L. Farb, D. A. Kerschensteiner, and H. F. Deutsch, Some sulfhydryl properties and primary structure of human erythrocyte superoxide dismutase, Biochemistry 19:2310 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    K. Lerch and D. Ammer, Amino acid sequence of copper-zinc superoxide dismutase from horse liver, J. Biol. Chem. 256:11545 (1981).PubMedGoogle Scholar
  12. 12.
    H. M. Steinman, Copper-zinc superoxide dismutase from Caulobacter crescentus CB15. A novel bacteriocuprein form of the enzyme, J. Biol. Chem. 257:10283 (1982).PubMedGoogle Scholar
  13. 13.
    G. J. Steffens, A. M. Michelson, K. Puget, and L. Flohé, The amino-acid sequence of rat Cu-Zn superoxide dismutase, Biol. Chem. Hoppe-Seyler 367:1017 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    G. J. Steffens, A. M. Michelson, F. Ötting, K. Puget, W. Strassburger, and L. Flohé, Primary structure of Cu-Zn superoxide dismutase of Brassica oleracea proves homology with corresponding enzymes of animals, fungi and prokaryotes, Biol. Chem. Hoppe-Seyler 367:1007 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    G.-J. Steffens, J. V. Bannister, W. H. Bannister, L. Flohé, W. A. Günzler, S.-M. A. Kim, and F. Ötting, The primary structure of Cu-Zn superoxide dismutase from Photobacterium leiognathi: Evidence for a separate evolution of Cu-Zn superoxide dismutase in bacteria, Hoppe-Seyler’s Z. Physiol. Chem. 364:676 (1983).CrossRefGoogle Scholar
  16. 16.
    K. Hering, S.-M. A. Kim, A. M. Michelson, F. Ötting, K. Puget, G. J. Steffens, and L. Flohé, The primary structure of porcine Cu-Zn superoxide dismutase. Evidence for allotypes of superoxide dismutase in pigs, Biol. Chem. Hoppe-Seyler 366:435 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    M. E. Schininà, D. Barra, M. Simmaco, F. Bossa, and G. Rotilio, Primary structure of porcine Cu,Zn superoxide dismutase, FEBS Lett. 186:267 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    Y. M. Lee, D. J. Friedman, and F. J. Ayala, Superoxide dismutase: An evolutionary puzzle, Proc. Natl. Acad. Sci. U.S.A. 82:824 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    M. E. Schininà, D. Barra, S. Gentilomo, F. Bossa, C. Capo, G. Rotilio, and L. Calabrese, Primary structure of a cationic Cu,Zn superoxide dismutase. The sheep enzyme, FEBS Lett. 207:7 (1986).PubMedCrossRefGoogle Scholar
  20. 20.
    K. Lerch and E. Schenk, Primary structure of copper-zinc superoxide dismutase from Neurospora crassa, J. Biol. Chem. 260:9559 (1985).PubMedGoogle Scholar
  21. 21.
    Y. Kitagawa, S. Tsunasawa, N. Tanaka, Y. Katsube, F. Sakiyama, and K. Asada, Amino acid sequence of copper, zinc-superoxide dismutase from spinach leaves, J. Biochem. 99:1289 (1986).PubMedGoogle Scholar
  22. 22.
    R. E. Cannon, J. A. White, and J. G. Scandalios, Cloning of cDNA for maize superoxide dismutase 2 (S0D2), Proc. Natl. Acad. Sci. U.S.A. 84:179 (1987).PubMedCrossRefGoogle Scholar
  23. 23.
    H. A. Rocha, W. H. Bannister, and J. V. Bannister, The amino-acid sequence of copper/zinc superoxide dismutase from swordfish liver. Comparison of copper/zinc superoxide dismutase sequences, Eur. J. Biochem. 145:477 (1984).PubMedCrossRefGoogle Scholar
  24. 24.
    M. E. McAdam, E. M. Fielden, F. Lavelle, L. Calabrese, D. Cocco, and G. Rotilio, The involvement of the bridging imidazolate in the catalytic mechanism of action of bovine superoxide dismutase, Biochem. J. 167:271 (1977).PubMedGoogle Scholar
  25. 25.
    I. Bertini, C. Luchinat, and R. Monnanni, Evidence of the breaking of the copper—imidazole bridge in copper/cobalt-substituted superoxide dismutase upon reduction of the copper(II) centers, J. Am. Chem. Soc. 107:2178 (1985).CrossRefGoogle Scholar
  26. 26.
    W. H. Koppenol, The physiological role of the charge distribution on superoxide dismutase, in: “Oxygen and Oxy-Radicals in Chemistry and Biology,” E. L. Powers and M. A. J. Rodgers, eds., Academic, New York (1981).Google Scholar
  27. 27.
    E. D. Getzoff, J. A. Tainer, P. K. Weiner, P. A. Kollman, J. S. Richardson, and D. C. Richardson, Electrostatic recognition between superoxide and copper, zinc superoxide dismutase, Nature 306:287 (1983).PubMedCrossRefGoogle Scholar
  28. 28.
    M. L. Salin and W. W. Wilson, Porcine superoxide dismutase, Mol. Cell. Biochem. 36:157 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    A. Cudd and I. Fridovich, Electrostatic interactions in the reaction mechanism of bovine erythrocyte superoxide dismutase, J. Biol. Chem. 257:11443 (1982).PubMedGoogle Scholar
  30. 30.
    W. H. Koppenol, On the reactivity of the superoxide anion and the biological function of superoxide dismutase, in: “Oxidases and Related Redox Systems,” T. E. King, M. S. Mason, and M. Morrison, eds., Pergamon, Oxford (1982).Google Scholar
  31. 31.
    C. L. Borders, Jr. and J. T. Johansen, Identification of Arg-143 as the essential arginyl residue in yeast Cu,Zn superoxide dismutase by use of a chromophoric arginine reagent, Biochem. Biophys. Res. Commun. 96:1071 (1980).PubMedCrossRefGoogle Scholar
  32. 32.
    W. F. Beyer, Jr., I. Fridovich, G. T. Mullenbach, and R. Hallewell, Examination of the role of arginine-143 in the human copper and zinc superoxide dismutase by site-specific mutagenesis, J. Biol. Chem. 262:11182 (1987).PubMedGoogle Scholar
  33. 33.
    R. A. Hallewell, F. R. Masiarz, R. C. Najarian, J. P. Puma, M. R. Quiroga, A. Randolph, R. Sanchez-Pescador, C. J. Scandella, B. Smith, K. S. Steimer, and G. T. Mullenbach, Human Cu/Zn superoxide dismutase cDNA: Isolation of clones synthesising high levels of active or inactive enzyme from an expression library, Nucl. Acids Res. 13:2017 (1985).PubMedCrossRefGoogle Scholar
  34. 34.
    R. A. Hallewell, R. Mills, P. Tekamp-Olson, R. Blacher, S. Rosenberg, F. Otting, F. R. Masiarz, and C. J. Scandella, Amino terminal acetylation of authentic human Cu,Zn superoxide dismutase produced in yeast, Biotechnology 5:363 (1987).CrossRefGoogle Scholar
  35. 35.
    H. E. Parge, E. D. Getzoff, C. S. Scandella, R. A. Hallewell, and J. A. Tainer, Crystallographic characterization of recombinant human CuZn superoxide dismutase, J. Biol. Chem. 261:16215 (1986).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • John A. Tainer
    • 1
  • Robert A. Hallewell
    • 1
  • Victoria A. Roberts
    • 1
  • Hans E. Parge
    • 1
  • Elizabeth D. Getzoff
    • 1
  1. 1.Dept. of Molecular BiologyResearch Institute of Scripps ClinicLa JollaUSA

Personalised recommendations