Advertisement

Radical-Induced Degradation of Organic Halogen and Sulfur Compounds in Oxygenated Aqueous Solutions

  • Klaus-Dieter Asmus
  • Manohar Lal
  • Jörg Mönig
  • Christian Schöneich
Part of the Basic Life Sciences book series (BLSC, volume 49)

Abstract

Halogenated and sulfur-containing organic compounds are two groups of chemicals that have long attracted the attention of scientists interested in free radicals. Numerous studies on aliphatic halogen substrates, for example, CCl4 or halothane (CF3CHClBr), have revealed a striking similarity between the product patterns obtained from metabolism and from free radical-induced degradation in vitro.1 This finding renders free radical studies potentially useful tools for understanding the chemistry of metabolic pathways.

Keywords

Peroxyl Radical Propyl Gallate Oxygen Addition Thiyl Radical Pulse Radiolysis Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.-D. Asmus, D. Bahnenann, K. Krischer, M. Lai, and J. Mtfnig, One-electron induced degradation of halogenated methanes and ethanes in oxygenated and anoxic aqueous solutions, Life Chemistry Reports, 3:1 (1985).Google Scholar
  2. 2.
    J. Mönig, K.-D. Asmus, L. G. Forni, and R. L. Willson, On the reaction of molecular oxygen with thiyl radicals. A reexamination, Int. J. Radiat. Biol. 52:589 (1987).CrossRefGoogle Scholar
  3. 3.
    K.-D. Asmus, Pulse radiolysis methodology, in: “Methods in Enzymology,” L. E. Packer, ed., vol 105, Academic Press, New York (1984).Google Scholar
  4. 4.
    M. Lai, J. Mönig, and K.-D. Asmus, Acid formation in the radical mediated degradation of chlorinated ethanes in aqueous environment. A radiation chemical study, J. Chem. Soc., Perkin Trans. 2:1639 (1987).Google Scholar
  5. 5.
    Landolt-Bomstein, “Numerical Data and Functional Relationships in Science and Technology. Radical Reaction Rates. New Series,” H. Fischer, ed., vol 13 Springer-Verlag, Berlin (1984).Google Scholar
  6. 6.
    J. Mönig, D. Bahnemann, and K.-D. Asmus, One-electron reduction of CCl4 in oxygenated aqueous solutions: A CCl3O2 free radical mediated formation of Cl- and CO2, Chem. Biol. Interact. 47:15 (1983).PubMedCrossRefGoogle Scholar
  7. 7.
    J. Mönig, K.-D. Asmus, M. Schaeffer, T. F. Slater, and R. L. Willson, Electron transfer reactions of halothane-derived peroxyl free radicals, CF3CHClO2.: Measurement of absolute rate constants, J. Chem. Soc., Perkin Trans. 2:1144 (1983)Google Scholar
  8. 8.
    J. E. Packer, T. F. Slater, and R. L. Willson, Reactions of the carbon tetrachloride-related peroxy free radical (CCl3O2O with amino acids: Pulse radiolysis evidence, Life Sci. 2:2617 (1978).CrossRefGoogle Scholar
  9. 9.
    J. Mönig, H. Gobi, and K.-D. Asmus, Free radical one-electron versus hydroxyl radical induced oxidation. Reaction of trichloromethyl-peroxyl radicals with simple and substituted aliphatic sulphides in aqueous solutions, J. Chem. Soc., Perkin Trans. 2:647 (1985).Google Scholar
  10. 10.
    M. Bonifacic and K.-D. Asmus, One-electron redox potentials of RSSR+-RSSR couples from dimethyl disulfide and llpoic acid, J. Chem. Soc., Perkin Trans, 2:1805 (1986)Google Scholar
  11. 11.
    J. Mönig and K.-D. Asmus, Formation and reactions of halothane peroxy free radicals, in: “Oxygen Radicals in Chemistry and Biology,” W. Bors, H. Saran, and D. Tait eds., W. de Gruyter & Co, Berlin (1984).Google Scholar
  12. 12.
    H. Zegota, H. N. Schuchmann, and C. von Sonntag, Elucidation of the mechanisms of peroxyl radical reactions in aqueous solutions using the pulse radiolysis technique, J. Radioanal. Nucl. Chem., Articles 101/102:199 (1986).Google Scholar
  13. 13.
    K.-D. Asmus, Formation and properties of oxygen radicals as studied by radiation chemical methods, in: “Reactive Oxygen Species in Chemistry, Biology and Medicine” NATO Advanced Study Institute Series, Plenum Press, New York, in press.Google Scholar
  14. 14.
    J. A. Howard, Peroxides, in: “The Chemistry of Functional Groups,” S. Patai, ed., John Wiley & Sons, New York (1983).Google Scholar
  15. 15.
    W. Adam and W. J. Baader, Effects of methylation on the thermal stability and chemiluminescence properties of 1,2-dioxetanes, J. Am. Chem. Soc. 107:410 (1985).CrossRefGoogle Scholar
  16. 16.
    K.-D. Asmus, Sulfur-centered free radicals. in: “Radioprotectors and Anticarcinogens,” O. F. Nygaard and M. G. Simic, eds., Academic Press, New York (1983).Google Scholar
  17. 17.
    H. Tamba, G. Simone and H. Quintiliani, Interactions of thiyl free radicals with oxygen, a pulse radiolysis study, Int. J. Radiat. Biol. 50:595 (1986).CrossRefGoogle Scholar
  18. 18.
    J. P. Barton and J. E. Packer, The radiolysis of oxygenated cysteine solutions at neutral pH. The role of RSSR“ and O2”, Int. J. Radiat. Phys. Chem. 2:159 (1970).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Klaus-Dieter Asmus
    • 1
  • Manohar Lal
    • 2
  • Jörg Mönig
    • 3
  • Christian Schöneich
    • 1
  1. 1.Bereich StrahlenchemieHahn-Meitner-Institut BerlinBerlin 39Federal Republic of Germany
  2. 2.Bhabha Atomic Research CentreBombayIndia
  3. 3.GSF Institut für TieflagerungBraunschweigFederal Republic of Germany

Personalised recommendations