Introduction to Peroxidation and Antioxidation Mechanisms

  • Michael G. Simic
  • Karen A. Taylor
Part of the Basic Life Sciences book series (BLSC, volume 49)


The propagation and maintenance of life requires substantial energy. The evolution of life on Earth led to utilization of oxygen as the major mediator of energy release from organic molecules, which are the source of energy for most organisms. The participation of oxygen in energy release is not essential, as demonstrated in anaerobic and sulfur bacteria that function without it. Why is oxygen-mediated energy release favored by most organisms? The major reasons for the evolutionary selection of oxygen are (1) its ready availability, (2) the high energy yield from oxidation, (3) the reversibility of the process (oxygen is consumed by energy-releasing processes such as cellular respiration and evolved in energy-trapping processes such as photosynthesis), and (4) the easy distribution of oxygen due to its gaseous state and its solubility in biocomponents under normal conditions.


Free Radical Peroxy Radical Pulse Radiolysis Laser Photolysis Free Radical Process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Balantine, “Pathology of Oxygen Toxicity,” Academic Press, New York (1982).Google Scholar
  2. 2.
    C. Rotilio, ed., “Superoxide and SOD in Biology and Medicine,” Elsevier, New York (1986).Google Scholar
  3. 3.
    J. M. McCord and I. Fridovich, Superoxide dismutase, J. Biol. Chem. 244:6049 (1969).PubMedGoogle Scholar
  4. 4.
    C. von Sonntag, “The Chemical Basis of Radiation Biology,” Taylor & Francis, New York (1987).Google Scholar
  5. 5.
    R. V. Bensasson, E. J. Land, and T. G. Truscott, “Flash Photolysis and Pulse Radiolysis,” Pergamon Press, New York (1983).Google Scholar
  6. 6.
    E. J. Hall, “Radiobiology for the Radiobiologist,” Harper and Row, Hagerstown, 1978.Google Scholar
  7. 7.
    F. Hutchinson, Chemical changes induced in DNA by ionizing radiation, Prog. Nucleic Acid Res. Mol. Biol. 32:115 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    P. Cerutti, O. F. Nygaard, and M. G. Simic, eds., “Anticarcinogenesis and Radiation Protection,” Plenum Press, New York (1987).Google Scholar
  9. 9.
    M. G. Simic and M. Karel, eds., “Autoxidation in Food and Biological Systems,” Plenum Press, New York (1980).Google Scholar
  10. 10.
    B. Halliwell and J. M. C. Gutteridge, “Free Radicals in Biology and Medicine,” Clarendon Press, Oxford (1985).CrossRefGoogle Scholar
  11. 11.
    D. Armstrong, R. S. Sohal, R. G. Cutler, and T. F. Slater, eds., “Free Radicals in Molecular Biology, Aging, and Disease,” Raven Press, New York (1985).Google Scholar
  12. 12.
    W. A. Pryor, ed., “Free Radicals in Biology,” vol. 1–4, Academic Press, New York (1976–1984).Google Scholar
  13. 13.
    C. Rice-Evans and B. Halliwell, eds., “Free Radicals: A Search for New Methodology,” Richelieu Press, Paris (1988).Google Scholar
  14. 14.
    M. Gomberg, An instance of trivalent carbon: Triphenylmethyl, J. Am. Chem. Soc. 22:757 (1900).CrossRefGoogle Scholar
  15. 15.
    M. G. Simic and K. A. Taylor, Free radical mechanisms of oxidation reactions, in: “Warmed-Over Flavor of Meat,” A. J. St. Angelo and M. E. Bailey, eds., Academic Press, Orlando (1987).Google Scholar
  16. 16.
    I. G. Draganic and Z. D. Draganic, “The Radiation Chemistry of Water,” Academic Press, New York (1971).Google Scholar
  17. 17.
    H. J. H. Fenton, Oxidation of tartaric acid in the presence of iron, J. Chem. Soc. Trans. 65:899 (1894).CrossRefGoogle Scholar
  18. 18.
    F. Haber and J. Weiss, Uber die Katalyse des Hydroperoxydes, Naturewiss. 20:948 (1932).CrossRefGoogle Scholar
  19. 19.
    S. Steenken and P. Neta, One-electron redox potentials of phenols. Hydroxy- and aminophenols and related compounds of biological interest, J. Phys. Chem. 86:3661 (1982).CrossRefGoogle Scholar
  20. 20.
    J. M. McCord and I. Fridovich, The reduction of cytochrome-c by milk xanthine oxidase, J. Biol. Chem. 243:5753 (1968).PubMedGoogle Scholar
  21. 21.
    E. Hayon and M. G. Simic, Acid-base properties of free radicals in solutions, Acc. Chem. Res. 7:114 (1974).CrossRefGoogle Scholar
  22. 22.
    Selected Specific Rates of Reactions of Transients from Water in Aqueous Solutions. U.S. Government Printing Office, Washington, D.C. I. Hydrated Electron. M. Anbar, M. Bambenek, and A. B. Ross, eds. (1973). NSRDS-NBS 43, Hydrated Electron, Supplemental Data (1975). NSRDS-NBS 43.Google Scholar
  23. 22a.
    II. Hydrogen Atom. M. Anbar, Farhataziz, and A. B. Ross, eds. (1975). NSRDS-NBS 51.Google Scholar
  24. 22b.
    III. Hydroxyl and Perhydroxyl Radicals. Farhatiziz and A. B. Ross, eds. (1977). NSRDS-NBS 59.Google Scholar
  25. 23.
    A. B. Ross and P. Neta, eds., “Rate Constants for Reactions of Aliphatic Carbon-Centered Radicals in Aqueous Solutions,” NSRDS-NBS 70 (1982).Google Scholar
  26. 24.
    Landolt-Bernstein, New Series, Group II, vol. 13, “Radical Reaction Rates in Liquids,” H. Fischer, ed., Springer-Verlag, New York.Google Scholar
  27. 25.
    J. L. Zweier, J. T. Flaherty, and M. L. Weisfeldt, Direct measurement of free radical generation following reperfusion of ischemic myocardium, Proc. Natl. Acad. Sci. U.S.A. 84:1404 (1987).PubMedCrossRefGoogle Scholar
  28. 26.
    C. M. Arroyo, J. H. Kramer, R. H. Leiboff, G. W. Mergner, B. F. Dickens, and W. B. Weglicki, Spin trapping of oxygen and carbon-centered free radicals in ischemic canine myocardium. Free Radical Biol. Med. 3:313 (1987).CrossRefGoogle Scholar
  29. 27.
    B. N. Ames, Dietary carcinogens and anticarcinogens, Science 221:1256 (1983).PubMedCrossRefGoogle Scholar
  30. 28.
    M. C. R. Symons, Unstable intermediates. Part CLXIII. Methyl radical anion adducts: Radiation effects on dimethyl sulphoxide, dimethyl sulphone, and their solutions in water and methanol, J. Chem. Soc., Perkin Trans. 2:908 (1976).Google Scholar
  31. 29.
    M. G. Simic, E. P. L. Hunter, and S. V. Jovanovic, Electron vs. H-atom transfer in chemical repair, in: “Anticarcinogenesis and Radiation Protection,” P. Cerutti, O. F. Nygaard, and M. G. Simic, eds., Plenum Press, New York (1987).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Michael G. Simic
    • 1
  • Karen A. Taylor
    • 1
    • 2
  1. 1.National Bureau of StandardsGaithersburgUSA
  2. 2.International Life Sciences InstituteUSA

Personalised recommendations