Introduction to Methods Used for Measuring Regional Cerebral Blood Flow with Single Photon Emission Tomography

  • Giovanni Lucignani
  • Maria Carla Gilardi
Part of the NATO ASI Series book series (NSSA, volume 153)


The measurement of regional cerebral blood flow (rCBF) has been pursued by methods generally based on kinetic models that require the systemic administration of tracer substances and the measurement of their concentration in arterial blood and brain tissue. Most of the kinetic models used for this purpose have been based on the Fick principle. This principle has been expanded by Kety to describe the exchange of inert gas, or other non-metabolizable, freely diffusible substances, between capillary blood and tissue 1. The nitrous-oxide method for measurement of CBF 2 was one of the first applications of the principles of inert gas exchange. This method in its original form did not utilize a radioactive tracer, but has been modified for use with radioactive gases 3 – 12.


Brain Tissue Tissue Concentration Regional Cerebral Blood Flow Radioactive Tracer Single Photon Emission Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kety, S.S., The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol. Rev., 3: 1 (1951).PubMedGoogle Scholar
  2. 2.
    Kety, S.S., and Schmidt, C.F., The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure, and normal values. J. Clin. Invest., 27: 476 (1948).CrossRefGoogle Scholar
  3. 3.
    Betz, E., Cerebral blood flow: its measurement and regulation. Physiol. Rev., 52: 595 (1972).PubMedGoogle Scholar
  4. 4.
    Freygang, W.H., Jr. and Sokoloff, L., Quantitative measurement of regional circulation in the central nervous system by the use of radioactive inert gas. Adv. Biol. Med. Physics, 6: 263 (1958).Google Scholar
  5. 5.
    Gjedde, A., Caronna, J.J., Hindfelt, B., and Plum, F., Whole-brain blood flow and oxygen metabolism in the rat during nitrous oxide anesthesia. Am. J. Physiol., 229: 113 (1975).PubMedGoogle Scholar
  6. 6.
    Gotoh, F., Meyer, J.S., and Tornita, M., Hydrogen method for determining cerebral blood flow in man. Arch. Neurol., 15: 549 (1966).PubMedCrossRefGoogle Scholar
  7. 7.
    Kety, S.S., The cerebral circulation. In: Handbook of Physiology: Neurophysiology, Vol. III, edited by J. Field, H.W. Magoun, and V.E. Hall, pp 1751–1760. American Physiological Society, Washington D.C. (1960).Google Scholar
  8. 8.
    Lassen, N. A. and Ingvar, D. H., The blood flow of the cerebral blood flow of the cerebral cortex determined by radioactive krypton-85, Experientia, 17: 42 (1961).PubMedCrossRefGoogle Scholar
  9. 9.
    Lassen N.A., and Munck, O., The cerebral blood flow in man determined by the use of radioactive krypton. Acta Physiol. Scand., 33: 30 (1955).PubMedCrossRefGoogle Scholar
  10. 10.
    Ingvar, D. H. and Lassen, N. A., Quantitative determination of regional cerebral blood flow in man, Lancet, 2: 806 (1961).CrossRefGoogle Scholar
  11. 11.
    Nilsson, B., and Sjesjo B. K., A method for determining blood flow and oxygen consumption in the rat brain. Acta Physiol. Scand., 96: 72 (1976)Google Scholar
  12. 12.
    Sokoloff, L., Quantitative measurement of cerebral blood flow in man. In: Methods in Medical Research, Vol VIII, edited by H.D. Bruner, pp 253–261. Year Book Publishers, Chicago (1960).Google Scholar
  13. 13.
    Reivich, M., Jehle J., Sokoloff L., and Kety S.S., Measurement of regional cerebral blood flow with antipyrine-14C in awake cats. J. Appl. Physiol., 27: 296 (1969).PubMedGoogle Scholar
  14. 14.
    Sakurada, 0., Kennedy, C., Jehle, J., Brown, J.D., Carbin, G.L., and Sokoloff, L., Measurement of local cerebral blood flow with [14C]iodoantipyrine. Am. J. Physiol., 239: H59 (1978).Google Scholar
  15. 15.
    Kuhl, D. E. and Edwards, R. Q., Image separation radioisotope scanning, Radiology, 80: 653 (1963).Google Scholar
  16. 16.
    Kuhl, D. E., Edwards, R. Q., Ricci, A. R. and Reivich, M., Quantitative section scanning using orthogonal tangent correction, J. Nucl. Med., 14: 196 (1973).PubMedGoogle Scholar
  17. 17.
    Lassen, N. A., Sveinsdottir, E., Kanno, E., Stokely, M., and Rommer, P., A fast moving single photon emission tomograph for regional cerebral blood flow studies in man, J. Comput. Assist. Tomogr., 2: 661 (1968).CrossRefGoogle Scholar
  18. 18.
    Fazio, F., Fieschi, C., Collice, M., Nardini, M., Banfi, F., Possa, M., and Spinelli, F., Tomographic assessment of cerebral perfusion using a single-photon emitter (Krypton-81m) and a rotating gamma camera, J. Nucl. Med., 21: 1139 (1980).PubMedGoogle Scholar
  19. 19.
    Kuhl, D. E., Barrio, J. R., Huang, S-C., Selin, C., Ackermann, R. F., Lear, J. L., Wu, J. L., Lin, T. H., and Phelps, M. E., Quantifying local cerebral blood flow by N-isopropylp[123I]iodoam-phetamine (IMP) tomography, J. Nucl., 23: 196 (1982).Google Scholar
  20. 20.
    Kety, S. S., Measurement of local blood flow by the exchange of an inert, diffusible substance, Methods Med. Res., 8: 228 (1960).Google Scholar
  21. 21.
    Eckman, W. W., Phair, R. D., Fenstermacher, J. D., Patlak, C. S., Kennedy, C., and Sokoloff, L., Permeability limitation in estimation of local brain blood flow with [14C]antipyrine, Am. J. Physiol., 229: 215 (1975).PubMedGoogle Scholar
  22. 22.
    Phelps, M. E., Huang, S. C., Hoffman, E. J., Selin, C., and Kuhl, D. E., Cerebral extraction of N-13 ammonia: Its dependence on cerebral blood flow and capillary permeability-surface area product, Stroke, 12: 607 (1981).PubMedCrossRefGoogle Scholar
  23. 23.
    Landau, W. M., Freygang, W. H., Jr., Rowland, L. P., Sokoloff, L., and Kety, S. S., The local circulation of the living brain: values in the unanesthetized and anesthetized cat, Trans. Am. Neurol. Assoc., 80: 125 (1955).Google Scholar
  24. 24.
    Crone, C., The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method, Acta. Physiol. Scand., 58: 292 (1963).CrossRefGoogle Scholar
  25. 25.
    Renkin, E. M., Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles, Am. J. Physiol, 197: 1205 (1969)Google Scholar
  26. 26.
    Crone, C., Permeability of capillaries in various organs as determined by use of the indicator diffusion method, Acta. Physiol. Scand., 58: 292 (1964).CrossRefGoogle Scholar
  27. 27.
    Huang, S-C. and Phelps, M. E., Principles of tracer kinetic modeling in positron emission tomography and autoradiography, in: “Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart,” M. Phelps, J. Mazziotta, and H. Schelbert, eds., Raven Press, New York (1986).Google Scholar
  28. 28.
    Kety, S.S., Measurement of regional circulation by the local clearance of radioactive sodium, American Heart Journal, 38: 321 (1949).PubMedCrossRefGoogle Scholar
  29. 29.
    Conn, H. L., Measurement of organ blood flow without blood sampling, J. Clin. Invest., 34: 916 (1955).Google Scholar
  30. 30.
    Hoedt-Rasmussen, K., Sveinsdottir, E., and Lassen, N. A., Regional cerebral blood flow in man determined by intra-arterial injection of radioactive inert gas, Circ. Res., 18: 137 (1966).Google Scholar
  31. 31.
    Obrist, W.D., Thompson, H.K., Wang, H.S., Wilkinson W.E., Regional cerebral blood flow estimated by 133Xe inhalation, Stroke, 6: 245 (1975).PubMedCrossRefGoogle Scholar
  32. 32.
    Sveinsdottir, E. Larsen, B., Rommer, P., and Lassen, N.A., A multidetector scintillation camera with 254 channels, J. Nucl. Med., 18: 168 (1977).PubMedGoogle Scholar
  33. 33.
    Kanno, I. and Lassen, N. A., Two methods for calculation of regional cerebral blood flow from emission computed tomography of inert gas concentration, J. Comput. Assist. Tomogr., 3: 71 (1979).PubMedCrossRefGoogle Scholar
  34. 34.
    Stokely, E. M., Sveindottir, E., Lassen, N. A., and Rommer, P., A single photon dynamic computer-assisted tomograph (DCAT) for imaging brain function in multiple cross-sections, J. Comput. Assist. Tomogr., 4: 230 (1980).PubMedCrossRefGoogle Scholar
  35. 35.
    Kanno, I., Uemura, K., Miura, S., Miura, Y., Headtome: A hybrid emission tomograph for single photon and positron emission imaging of the brain, J. Comput. Assist. Tomogr 5: 216 (1981).PubMedCrossRefGoogle Scholar
  36. 36.
    Celsis, P., Goldman, T., Henriksen, L., and Lassen, N. A., A method for calculating regional cerebral blood flow from emission computed tomography of inert gas concentrations, J. Comput. Assist. Tomogr., 5: 641 (1981).PubMedCrossRefGoogle Scholar
  37. 37.
    Lassen, N.A., Cerebral blood flow tomography with Xenon-133, Seminars in Nuclear Medicine 14: 347 (1985).CrossRefGoogle Scholar
  38. 38.
    Winchell, H. S., Baldwin, R. M., and Lin, T. H., Development of I-123-labeled amines for brain studies: Localization of I-123 iodophenylalkyl amines in rat brain, J. Nucl. Med., 21: 940 (1980).PubMedGoogle Scholar
  39. 39.
    Tramposch, K. M., Kung, H. F., and Blau, M., Radioiodine labeled N,N-dimethyl-N-(2-hydroxyl-3-alkyl-5- iodobenzyl)-1,3propanediamines for brain perfusion imaging, J. Med. Chem., 28: 121 (1983).CrossRefGoogle Scholar
  40. 40.
    Holman, B., Lee, R., Hill, T., Lovett, R., and Lister-James, J., A comparison of two cerebral perfusion tracers, N-isopropyl I-123 p-iodoamphetamine and I-123 HIPDM, in the human, J. Nucl. Med. 25: 25 (1984).PubMedGoogle Scholar
  41. 41.
    Lear, J. L., Ackermann, R. F., Kameyama, M., and Kuhl, D. E., Evaluation of 123 I-isopropyliodoamphetamine as a tracer for local cerebral blood flow using direct autoradiographic comparison, J. Cereb. Blood Flow Metabol., 2: 179 (1982).CrossRefGoogle Scholar
  42. 42.
    Fazio, F., Lenzi, G. L., Gerundini, P., Collice, M., Gilardi, M. C., Colombo, R., Taddei, G., Del Maschio, A., Piacentini, M., Kung, H.F., and Blau, M., Tomographic assessment of regional cerebral perfusion using intravenous [123HIPDM and a rotating gamma camera, J. Comput. Assist. Tomogr., 8: 911 (1984).PubMedCrossRefGoogle Scholar
  43. 43.
    Lucignani, G., Nehlig, A., Blasberg, R., Patlak, C.S., Anderson, L., Fieschi, C., Fazio, F., and Sokoloff, L., Metabolic and kinetic considerations in the use of [125I]HIPDM for quantitative measurement of regional cerebral blood flow, J. Cereb. Blood Flow Metabol. 5: 86 (1985).CrossRefGoogle Scholar
  44. 44.
    Kung, H. F. and Blau, M., Regional intracellular pH shift: a proposed new mechanism for radiopharmaceutical uptake in brain and other tissues, J. Nucl. Med., 21, 147 (1980).PubMedGoogle Scholar
  45. 45.
    Knott, G. D. and Reece, D. K., MLAB: A civilized curve-fitting system, Proceedings of the ONLINE ‘72 International Conference, Vol. 1, Brunel University, England, 497 (1972).Google Scholar
  46. 46.
    Knott, G. D. and Shrager, R. I., Computer Graphics: Proceedings of SIGGRAPH Computers in Medicine Symposium, Vol. 6, No. 4, ACM, SIGGRAPH Notices, 138 (1972).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Giovanni Lucignani
    • 1
  • Maria Carla Gilardi
    • 1
  1. 1.Centro Studi Fisiologia Del Lavoro MuscolareConsiglio Nazionale Delle RicercheMilanoItaly

Personalised recommendations