Basic Principles in Imaging of Regional Cerebral Metabolic Rates with Radioisotopes

  • Louis Sokoloff
Part of the NATO ASI Series book series (NSSA, volume 153)


Radioisotopes are frequently used to facilitate the assay of rates of biochemical reactions. Usually they are used to study chemical reactions in vitro and the procedure is to label one of the reactants and to measure the rate of accumulation of a labeled product. From assay or knowledge of the specific activity of the reactant molecule and the stoichiometry of the reaction the rate of the overall reaction can be calculated from the rate of radioactive product formation. The application of this approach generally necessitates, however, specialized biochemical procedures to identify and isolate the labeled product so as to limit the measurement of the radioactivity to a specific chemical product of the reaction.


Operational Equation Glucose Utilization Arterial Plasma Precursor Pool Intravenous Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrams, R., Ito, M., Frisinger, J. E., Patlak, C. S., Pettigrew, K. D., and Kennedy, C., 1984, Local cerebral glucose utilization in fetal and neonatal sheepAm.J. Physiol. 246:R608.PubMedGoogle Scholar
  2. 2.
    Bachelard, H. S., 1971, Specificity and kinetic properties of monosaccharide uptake into guinea pig cerebral cortex in vitro, J. Neurochem. 18:213.CrossRefGoogle Scholar
  3. 3.
    Bidder, T. G., 1968, Hexose translocation across the blood-brain interface: configurational aspects, J. Neurochem. 15:867.PubMedCrossRefGoogle Scholar
  4. 4.
    Des Rosiers, M. H., Sakurada, O., Jehle, J., Shinohara, M., Kennedy, C., and Sokoloff, L., 1978, Functional plasticity in the immature striate cortex of the monkey shown by the [14C]deoxyglucose method, Science 200: 447.PubMedCrossRefGoogle Scholar
  5. 5.
    Diemer, N. H. and Gjedde, A., 1983, Autoradiographic determination of brain glucose content and visualization of the regional lumped constant, J. Cerebral Blood Flow Metab. 3(Suppl. 1)S79.CrossRefGoogle Scholar
  6. 6.
    Duffy, T. E., Cavazzuti, M., Cruz, N. F., and Sokoloff, L., 1982, Local cerebral glucose metabolism in newborn dogs: effects of hypoxia and halothane anesthesia, Ann. Neurol. 11:233.CrossRefGoogle Scholar
  7. 7.
    Fishman, R. S. and Karnovsky, M. L., 1986, Apparent absence of a translocase in the cerebral glucose-6-phosphatase system, J. Neurochem., 46: 371.PubMedCrossRefGoogle Scholar
  8. 8.
    Frackowiak, R. S. J., Lenzi, G.-L., Jones, T., and Heather, J. D., 1980, Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 150 and positron emission tomography, J. Comput. Assist. Tomgr. 4:727.CrossRefGoogle Scholar
  9. 9.
    Goochee, C., Rasband, W., and Sokoloff, L., 1980, Computerized densitometry and color coding of [14C]deoxyglucose autoradiographs, Ann. Neurol., 7: 359.PubMedCrossRefGoogle Scholar
  10. 10.
    Hawkins, R. A. and Miller, D. L., 1978, Loss of radioactive 2-deoxy-D-glucose-6-phosphate from brains of implications for quantitative autoradiographic determination of regional glucose utilization, Neuroscinece 3: 251.Google Scholar
  11. 11.
    Hawkins, R., Phelps, M., Huang, S. C., and Kuhl, D., 1981, Effect of ischemia upon quantification of local cerebral metabolic rates for glucose with 2-(F-18)fluoro-deoxyglucose (FDG). J. Cereb. Blood Flow Metab 1(Suppl 1)S9.Google Scholar
  12. 12.
    Hers, H. G., 1957, “Le Métablisme du Fructose, Bruxelles, Editions Arscia, 102.Google Scholar
  13. 13.
    Huang, S. C., Phelps, M. E., Hoffman, E. J., Sideris, K., Selin, C. J., and Kuhl, D. E., 1980, Noninvasive determination of local cerebral metabolic rate of glucose in man, Am. J. Physiol. 238:E69.PubMedGoogle Scholar
  14. 14.
    Huang, M.-T. and Veech, R. L., 1982, The quantitative determination of the in vivo dephosphorylation of glucose 6-phosphate in rat brain, J. Biol. chem. 257:11358.PubMedGoogle Scholar
  15. 15.
    Hubel, D. H. and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol. 195:215.PubMedGoogle Scholar
  16. 16.
    Hubel, D. H., Wiesel, T. N., and LeVay, S., 1977, Plasticity of ocular dominance columns in monkey striate cortex, Phil. Trans. R. Soc. Lond. (Biol.) 278:377.CrossRefGoogle Scholar
  17. 17.
    Kennedy, C., Des Rosiers, M. H., Sakurada, 0., Shinohara, M., Reivieh, M., Jehle, J. W., and Sokoloff, L., 1976, Metabolic mapping of the primary visual system of the monkey by means of the autoradiographie [11C]deoxyglucose technique, Proc. Natl. Acad. Sci. USA 73:4230.Google Scholar
  18. 18.
    Kennedy, C., Sakurada, O., Shinohara, M., Jehle, J., and Sokoloff, L., 1978, Local cerebral glucose utilization in the normal conscious Macaque monkey, Ann Neurol, 4: 293.PubMedCrossRefGoogle Scholar
  19. 19.
    Kennedy, C., Suda, S., Smith, C. B., Miyaoka, M., Ito, M., and Sokoloff, L., 1981, Changes in protein synthesis underlying functional plasticity in immature monkey visual system, Proc. Natl. Acad. Sei. U.S.A., 78:39.Google Scholar
  20. 20.
    Kety, S. S. and Schmidt, C. F., 1948, The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure, and normal values, J. Clin. Invest. 27:500.CrossRefGoogle Scholar
  21. 21.
    MacGregor, R., Fowler, J. S., Wolfe, A. P., Shiue, C. Y., Lade, R. E., and Wan, C. N., 1981, A synthesis of 11C-2-deoxy-D-glucose for regional studies, J. Nucl. Med. 22:800.PubMedGoogle Scholar
  22. 22.
    Nelson, T., Kaufman, E. E., and Sokoloff, L., 1984, 2-Deoxyglucose incorporation into rat brain glycogen during measurement of local cerebral glucose utilization by the 2-deoxyglucose method, J. Neurochem. 43:949.Google Scholar
  23. 23.
    Nelson, T., Lucignani, G., Atlas, S., Crane, A. M., Dienel, G. A., and Sokoloff, L., 1985, Reexamination of glucose-6-phosphatase activity in the brain in vivo: no evidence for a futile cycle, Science 229: 60.PubMedCrossRefGoogle Scholar
  24. 24.
    Nelson, T., Lucignani, G., Goochee, J., Crane, A. M., and Sokoloff, L., 1986, Invalidity of criticisms of the deoxyglucose method based on allged glucose-6-phosphatase activity in brain, J. Neurochem., 46: 905.PubMedCrossRefGoogle Scholar
  25. Oldendorf, W. H., 1971, Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection, Amer. J. Physiol. 221:1629.PubMedGoogle Scholar
  26. 26.
    Phelps, M. E., Barrio, J. R., Huang, S.-C., Keen, R. E., Chugani, H., and Mazziotta, J. C., 1985, Measurement of cerebral protein synthesis in man with positron computerized tomography: Model, assumptions, and preliminary results, in: “The Metabolism of the Human Brain Studied with Positron Emission Tomography,” J. Greitz, D. H. Ingvar, and L. Widén, eds., Raven Press, New YorkGoogle Scholar
  27. 27.
    Phelps, M. E., Huang, S. C., Hoffman, E. J., Selin, C., Sokoloff, L., and Kuhl, D. E., 1979, Tomographie measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-d-glucose: validation of method, Ann. Neurol 6: 371.Google Scholar
  28. Reivich, M., Alavi, A., Wolf, A., Fowler, J., Russell, J., Arnett, C., MacGregor, R. R., Shiue, C. Y., Atkins, H., Anand, A., Dann, R., and Greenberg, J. H., 1985, Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose, J. Cereb. Blood Flow Metab. 5:179.Google Scholar
  29. Reivich, M., Jehle, J., Sokoloff, L., and Kety, S. S., 1969, Measurement of regional cerebral blood flow with antipyrine-14C in awake cats, J. Appl. Physiol. 27:296.PubMedGoogle Scholar
  30. 30.
    Reivich, M., Kuhl, D., Wolf, A., Greenberg, J., Phelps, M., Ido, T., Cassella, V., Fowler, J., Hoffman, E., Alavi, A., Som, P., and Sokoloff, L., 1979, The [18]fluoro-deoxyglucose method for the measurement of local cerebral glucose utilization in man, Circ. Res. 44: 127.Google Scholar
  31. 31.
    Reivich, M., Alavi, A., Wolf, A., Greenberg, J. H., Fowler, J., Christman, D., MacGregor, R., Jones, S. C., London, J., Shiue, C., and Yonekura, Y., 1982, Use of 2-deoxy-D[1-11C]glucose for the determination of local cerebral glucose metabolism in humans: variation within and between subjects, J. Cerebral Blood Flow Metab., 2:307.Google Scholar
  32. 32.
    Sacks, W., Sacks, S., and Fleischer, A., 1983, A comparison of the cerebral uptake and metabolism of labeled glucose and deoxyglucose in vivo in rats, Neurochem Res., 8: 661.Google Scholar
  33. 33.
    Schuier, F., Orzi, F., Suda, S., Kennedy, C., and Sokoloff, L., 1981, The lumped constant for the [14C]deoxyglucose method in hyperglycemic rats. J. Cereb. Blood Flow Metab 1(1):S63.Google Scholar
  34. 34.
    Smith, C. B., Crane, A. M., Kadekaro, M., Agranoff, B. W., and Sokoloff, L., 1984, Stimulation of protein synthesis and glucose utilization in the hypoglossal nucleus induced by axotomy, J. Neurosci,4: 2489.Google Scholar
  35. 35.
    Smith, C. B., Davidsen, L., Deibler, G., Patlak, C., Pettigrew, K., and Sokoloff, L., 1980, A method for the determination of local rates of protein synthesis in brain, Trans. Am. Soc. Neurochem. 11: 94.Google Scholar
  36. 36.
    Sokoloff, L., 1978, Local cerebral energy metabolism: its relationships to local functional activity and blood flow, in: “Cerebral Vascular Smooth Muscle and Its Control,” M. J. Purves and K. Elliott, eds., Elsevier/Excerpta Medica/North-Holland, Amsterdam.Google Scholar
  37. 37.
    Sokoloff, L., 1979, The [14C]doxyglucose method: four years later, Acta. Neurol. Scand. (Suppl. 70) 60:640.Google Scholar
  38. 38.
    Sokoloff, L., 1981, Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose, J. Cereb. Blood Flow Metab., 1:7.Google Scholar
  39. 39.
    Sokoloff, L., 1982, The radioactive deoxyglucose method: theory, procedure, and applications for the measurement of local glucose utilization in the central nervous system, in: “Advances in Neurochemistry, Vol. 4,” B. W. Agranoff and M. H. Aprison, eds., Plenum Publishing Corp, New York.Google Scholar
  40. 40.
    Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, 0., and Shinohara, M., 1977, The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat, J.Neurochem 28: 897.Google Scholar
  41. 41.
    Sols, A. and Crane, R. K., 1954, Substrate specificity of brain hexokinase, J. Biol. Chem. 210:581.Google Scholar
  42. 42.
    Suda, S., Shinohara, M., Miyaoka, M., Kennedy, C., and Sokoloff, L., 1981, Local cerebral glucose utilization in hypoglycemia, J. Cerebral Blood Flow Metab. 1(1):S62.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Louis Sokoloff
    • 1
  1. 1.Laboratory of Cerebral MetabolismNational Institute of Mental HealthBethesdaUSA

Personalised recommendations