Basic Mechanisms in Cerebral Hypoxia and Stroke: Background, review and conclusions

  • George G. Somjen
Part of the Advances in Behavioral Biology book series (ABBI, volume 35)


This chapter reviews material presented at the Symposium and also pertinent literature, seeking answers to three sets of problems: 1. the mechanism of the reversible blockade of synapses in the early stages of hypoxia and ischemia of the central nervous system (CNS); 2. the irreversible injury of neurons during more prolonged severe hypoxia or ischemia; and 3. the delayed cell death that occurs after reoxygenation or reperfusion of previously hypoxic or ischemic brain tissue. During the reversible phase pre- and postsynaptic factors interact to block all synapses, excitatory as well as inhibitory. On the presynaptic side voltage-dependent calcium channels appear blocked in hypoxic presynaptic terminals. Postsynaptically many though not all types of neurons become hyperpolarized, which raises their firing threshold. Hyperpolarization is due to increased K+ −conductance. Acidosis may play a part by raising the threshold of postsynaptic neurons. Cells may be irreversibly injured through several different pathologic processes. Elevation of free intracellular calcium ([Ca2+]i) above a critical level for a critical length of time appears to trigger, or at least hasten, some of these injurious processes. The elevation of [Ca2+]i during severe hypoxia is due to the explosive, spreading depression (SD)-like, depolarization of neurons. Factors contributing to the delayed post-hypoxic or post-ischemic cell death may include excitatory amino acid (EAA)-induced firing, reactive hyperemia and/or hypoxic damage to blood vessels resulting in vasogenic edema and secondary vascular failure, aggravated by lactic acidosis. In the striatum dopamine is required for the damage that EAAs cause in the hippocampus. Adenosine and noradrenaline appear to be endogenous prophylactic agents protecting CNS neurons. Opinions are divided concerning the role of free radicals and peroxide in cerebral ischemia.


Cerebral Ischemia Hippocampal Slice Excitatory Amino Acid Transmitter Release Cortical Spreading Depression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, D.J., Takeda, K., Umbach, J.A., 1985, Inhibitors of calcium buffering depress evoked transmitter release at the squid giant synapse. J. Physiol., 369: 145–159.Google Scholar
  2. 2.
    Ames, A., Wright, R.L., Kowada, M., Thurston, J.M., Majno, G., 1968, Cerebral ischemia: The no-reflow phenomenon. Am. J. Pathol., 52: 437–453.Google Scholar
  3. 3.
    Ashton, D., Van Belle, H., Wynants, J., Willems, R., Wauquier, A., Janssen, P.A.J., 1988, The nuceloside-transport inhibitor, mioflazine, increases recovery of hippocampal synaptic transmission and energy-rich metabolites after normothermic global ischemia. (This volume, pp. 419–422).Google Scholar
  4. 4.
    Astrup, J. Rehncrona, S., Siesjo, B.K., 1980, The increase in extracellular potassium concentration in the ischemic brain in relation to preischemic activity and cerebral metabolic rate. Brain Res., 199: 161–174.CrossRefGoogle Scholar
  5. 5.
    Balentine, J.D., Spector, M., 1977, Calcification of axons in experimental spinal cord trauma. Ann. Neurol. 2: 520–523.CrossRefGoogle Scholar
  6. 6.
    Balestrino, M., Aitken, P.G., Jones, L.S., Somjen, G.G., 1988, The role of spreading depression-like hypoxic depolarization in irreversible neuron damage, and its prevention. (This volume, pp. 291–301).Google Scholar
  7. 7.
    Balestrino, M., Somjen, G.G., 1988, Concentration of carbon dioxide, interstitial pH and synaptic transmission in hippocampal formation of the rat. J. Physiol. 396: 247–266.Google Scholar
  8. 8.
    Bazan, N.G., 1970, Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta, 218: 1–10.Google Scholar
  9. 9.
    Benesova, O., Buresova, O., and Bures, J., 1957, Die Wirkung des Chlorpromazins und der Glykamie auf das elektrophysiologisch kontrollierte Uberleben der Hirnrinde bei verschiedenen Korpertemperaturen. Arch. Exp. Pathol. Pharmakol. 231: 550–561.CrossRefGoogle Scholar
  10. 10.
    Benveniste, H., Drejer, J., Schousboe, A., Diemer, N.H., 1984, Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43: 1369–1374.CrossRefGoogle Scholar
  11. 11.
    Biersteker, P.A., Collewijn, H., Van Harreveld, A., 1966, Asphyxial potentials of spinal grey matter and of ventral and dorsal roots. J. Physiol. 185: 15–29.Google Scholar
  12. 12.
    Biscoe, T.J., Duchen, M.R., Eisner, D.A., O’Neill, S.C., Valdeolmillos, M., 1988, The effects of glucose removal and cyanide on intracellular Ca in isolated, single mouse dorsal root ganglion cells. J. Physiol. 401: 60 P.Google Scholar
  13. 13.
    Block, G.A., Pulsinelli, W.A., 1988, Excitatory amino acid and purinergic transmitter involvement in ischemia-induced selective neuronal death. (This volume, pp. 359–365).Google Scholar
  14. 14.
    Bosley, T.M., Woodhams, P.L., Gordon, R.D., Bala’zs, R., 1983, Effects of anoxia on the stimulated release of amino acid neurotransmitters in the cerebellum in vitro. J. Neurochem., 40: 189–201.CrossRefGoogle Scholar
  15. 15.
    Brierly, J.B., 1976, Cerebral Hypoxia. In: W. Blackwood and J.A.N. Corsellis (eds): Greenfield’s Neuropathology, 3rd Ed., Ed. Arnold, London, pp. 43–85.Google Scholar
  16. 16.
    Bures, J. Buresova, 0., 1988, Susceptibility to spreading depression and anoxia: Regional differences and drug control. ( This volume, pp. 253–267 ).Google Scholar
  17. 17.
    Clark, G.D., Rothman, S.M., 1987, Blockade of excitatory amino acid receptors protects anoxic hippocampal slices. Neuroscience, 21: 665–671.CrossRefGoogle Scholar
  18. 18.
    Collewijn, H., Van Harreveld, A., 1966, Intracellular recording from spinal motoneurones during acute asphyxia. J. Physiol. 185: 1–14.Google Scholar
  19. 19.
    Crain, B.J., Nadler, V.J., 1988, Selective neuronal cell death after transient forebrain ischemia in the mongolina gerbil. (This volume, pp. 35–47).Google Scholar
  20. 20.
    Davis, J.N., Carlsson, A., 1973, The effect of hypoxia on monoamine synthesis, levels and metabolism in rat. J. Neurochem., 21: 783–790.CrossRefGoogle Scholar
  21. 21.
    De Courten, G.M., Yamaguchi, S., Myers, R.E., 1981, Influence of serum glucose concentration upon rapidity of circulatory failure during hypoxia and brain inury in cats. Exc. Med. Internat’l Congr. Series no. 532: 201–207.Google Scholar
  22. 22.
    Demopoulos, H., Flamm, E., Seligman, R., Power, R., Pietronigro, D., and Ransohoff, J., 1977, Molecular pathology of lipids in CNS membranes. In: F.F. Jobsis (ed): Oxygen and physiological function, Profess. Info. Libr. Dallas, pp. 491–504.Google Scholar
  23. 23.
    Deshpande, J.K., Siesjo, B.K., Wieloch, T., 1987, Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia. J. Cereb. Blood Flow Metab. 7: 89–95.CrossRefGoogle Scholar
  24. 24.
    Deshpande, J., Wieloch, T., 1985, Amelioration of ischemic brain damage by postischemic treatment with flunarizine. Neurol. Res., 7: 27–29.Google Scholar
  25. 25.
    Dolphin, A.C., Archer, E.R., 1983, An adenosine agonist inhibits and a cyclic AMP analogue enhances the release of glutamate but not GABA from slices of rat dentate gyms. Neurosci. Lett., 43: 49–54.CrossRefGoogle Scholar
  26. 26.
    Dora, E., Kovach, A.G.B., Greenberg, J.H., Tanaka, K., Gonatas, N.H., Reivich, M., 1988, Microcirculation and metabolism in reversible and irreversible cerebral ischemia. (This volume, pp. 119–133).Google Scholar
  27. 27.
    Duchen, M.R., Somjen, G.G., 1988, Effects of cyanide and low glucose on the membrane currents of dissociated mouse primary sensory neurones. J. Physiol. 401: 61 P.Google Scholar
  28. 28.
    Duffy T.E., Nelson, S.R., Lowry, O.H., 1972, Cerebral carbohydrate metabolism during acute hypoxia and recovery. J. Neurchem. 19: 959–977.CrossRefGoogle Scholar
  29. 29.
    Dunwiddie, T.V., Hoffer, B.J., 1980, Adenine nucleotides and synaptic transmission in the in vitro rat hippocampus. Brit. J. Pharmacol., 69: 59–68.Google Scholar
  30. 30.
    Dupont, J.L., Bossu, J.L., Feltz, A., 1986, Effect of internal calcium concentration on calcium currents in rat sensory neurones. Pflug. Arch. 406: 433–435.CrossRefGoogle Scholar
  31. 31.
    Dux, E., Mies, G., Hossmann, K.-A., Siklos, L., 1987, Calcium in the mitochondria following brief ischemia of grebil brain. Neurosci. Lett. 78: 295–300.CrossRefGoogle Scholar
  32. 32.
    Dux, E., Temesvari, P., Joo, F., Szerdahelyi, P., 1988, Cerebroprotective effect of histamine receptor blockers in hypoxia-induced experimental brain edema. (this volume, p. 427).Google Scholar
  33. 33.
    Eccles, R.M., Loyning, Y., Oshima, T., 1966, Effects of hypoxia on the monoysnaptic reflex pathway in the cat spinal cord. J. Neurophysiol. 29: 315–3 22.Google Scholar
  34. 34.
    Eckert, R., Chad, J.E., 1984, Inactivation of calcium channels. Progr. Biophys. Molec. Biol. 44: 215CrossRefGoogle Scholar
  35. 35.
    Farber, J.L., El-Mofty, S.K., 1975, The biochemical pathology of liver cell necrosis. Am. J. Pathol. 81: 237–250.Google Scholar
  36. 36.
    Fleckenstein, A., 1971, Specific inhibitors and promoters of calcium action in the excitation-contraction coupling of heart muscle and their role in the prevention or production of myocardial lesions. In: P. Harris and L. Opie (eds): Calcium and the heart. Academic Press, London, pp. 135–188.Google Scholar
  37. 37.
    Fridovich, I., 1979, Hypoxia and oxygen toxicity. Adv. Neurol. 26: 255–259.Google Scholar
  38. 38.
    Gibson, G.E., Duffy, T.E., 1981, Impaired synthesis of acetylcholine by mildhypoxic hypoxia or nitrous oxide. J. Neurochem., 36: 28–33.CrossRefGoogle Scholar
  39. 39.
    Globus, M.Y.-T., Ginsberg, M.D., Busto, R., Dietrich, W.D., Martinez, E., Valdez, I., and Scheinberg, P., 1988, Dopamine and the susceptibility of striatal neurons to ischemia. (This volume, pp. 379–388)Google Scholar
  40. 40.
    Glotzner, F., 1967, Intracellulare Potentiale, EEG und corticale Gleichspannung and der sensorimotorischen Rinde der Katze bei akuter Hypoxie. Arch. Psychiatr. Nervenkr. 210: 274–296.CrossRefGoogle Scholar
  41. 41.
    Godfraind, J.M., Kawamura, H., Krnjevic, K., Pumain, R., 1971, Actions of dinitrophenol and some other metabolic inhibitors on cortical neurones. J. Physiol. 215: 199–222.Google Scholar
  42. 42.
    Graf, R., Heiss, W.-D., Kataoka, K., Rosner, G., Wakayama, A., 1988, The dependence of cerebral ischemic damage on duration and severity of ischemia: Studies of single cell activity and multimodally evoked responses. ( This volume, pp. 109–117 ).Google Scholar
  43. 43.
    Greene, R.W., Haas, H.L., 1985, Adenosine actions on CA1 pyramidal neurones in rat hippocampal slices. J. Physiol., 366: 119–127.Google Scholar
  44. 44.
    Grossman, R.G., Williams, V.F., 1971, Electrical activity and ultrastructure of cortical neurons and snapses in ischemia. Clinics Develop. Med. 39–40: 61–75.Google Scholar
  45. 45.
    Gurdjian, E.S., Stone, W.E., Webster, M.J., 1944, Cerebral metabolism in hypoxia. A.M.A. Arch’s Neurol. Psychiat. 51: 472–477.Google Scholar
  46. 46.
    Hansen, A.J., 1985, Effect of anoxia on ion distribution in the brain. Physiol. Rev. 65: 101–148.Google Scholar
  47. b. Hansen, A.J., 1988, ffects of anoxia on nerve cell function. (This volume, pp. 165–173).Google Scholar
  48. 47.
    Hansen, A.J., Hounsgaard, J., Jahnsen, H., 1982, Anoxia increases potassium conductance in hippocampal nerve cells. Acta Physiol. Scand. 115: 301–310.CrossRefGoogle Scholar
  49. 48.
    Harris, R.J., Symon, L., Branston, N.M., Bayhan, M., 1981, Changes in extracellular calcium activity in cerebral ischemia. J. Cereb. Blood Flow Metab. 1: 203–209.CrossRefGoogle Scholar
  50. 49.
    Hass, W.K., 1981, Beyond cerebral blood flow, metabolism and ischemic thresholds: an examination of the rle of calcium in the initiatio of cerebral infarction. Excerpta Med. Internat’l Congr. Ser. no. 532: 3–17.Google Scholar
  51. 50.
    Hernandez-Ca’ceres, J., Marcias-Gonzales, R., Brozek, G., Bures, J., 1987, Systemic ketamine blocks cortical spreading depression but does not delay the onset of terminal anoxic depolarization in rats. Brain Res., 437: 360–364.CrossRefGoogle Scholar
  52. 51.
    Higashi, H., Sugita, S., Nishi, S., Shimoji, K., 1988, The effect of hypoxia on hippocampal neurones and its prevention by Ca2+-antagonists. (This volume, pp. 205–218).Google Scholar
  53. 52.
    Hille, B., 1984, Ionic channels of excitable membranes. Sinauer Ass., Sunderland, Massachusetts, pp. 87–89.Google Scholar
  54. 53.
    Hochachka, P.W., 1988, Inborn resistance to hypoxa and the O2_dependence of metabolism. (This volume, pp 1–7).Google Scholar
  55. 54.
    Imaizumi, S., Tominaga, T., Uenohara, H., Kinouchi, H., Yoshimoto, T., Suzuki, J., 1988, Detection of free radicals in cerebral tissue and their relation to cerebral hypoxia/ischemia. (This volume pp. 321–335).Google Scholar
  56. 55.
    Johansen, F.F., Zimmer, J., Diemer, N.H., 1987, Early loss of somatostatin neurons in dentate hilus after cerebral ischemia in the rat precedes CA-1 pyramidal cell loss. Acta neuropathol. 73: 110–114.CrossRefGoogle Scholar
  57. 56.
    Johansen, F.F., Zimmer, J., Diemer, N.H., 1988, Possible implications of ischemic damage to dentate hilar somatostatin neurons in the rat. (This volume, p. 49).Google Scholar
  58. 57.
    Judah, J.D., Ahmed, K., McLean, A.E.M., 1964, Possible role of ion shifts in liver injury. In: A.S. de Reuck and J. Knight (eds): CIBA Foundation Symposium on cellular injury. Little, Borown & Co., Boston, pp. 187–205.Google Scholar
  59. 58.
    Jung, R., 1953, Hirnelektrische Befunde bei Kreislaufstorungen und Hypoxieschaden des Gehirns. Verh. Deutsch. Ges. Kreisl.-Forsch. 19: 170–196Google Scholar
  60. 59.
    Kandel, E.R., 1981, Calcium and the control of synaptic strength by learning. Nature, 293: 697–699.CrossRefGoogle Scholar
  61. 60.
    Kawasaki, K., Cze’h, G., Somjen, G.G., 1988, Does Lea—o’s spreading depression cause irreversible brain damage? (This volume, pp. 305–306).Google Scholar
  62. 61.
    Kirino, T., Tamura, A., Sano, K., 1988, Early and late neuronal damage following cerebral ischemia. (This volume, pp. 23–34).Google Scholar
  63. 62.
    Klatzo, I., 1988, Role of edema in pathophysiology of ischemic injury. (This volume, pp. 53–56).Google Scholar
  64. 63.
    Kogure, K., Arai, H., Abe, K., Nakano, M., 1985, Free radical damage of the brain following ischemia. Progr. Brain Res. 65: 237–259.CrossRefGoogle Scholar
  65. 64.
    Kogure, K., Hossmann, K.-A., Siesj_, B.K., Welsh, F.A., 1985, Molecular mechanisms of ischemic brain damage. Progr. Brain Res. Vol. 65, Elsevier, Amsterdam, 264 pp.Google Scholar
  66. 65.
    Kolmodin, G.M., Skoglund, C.R., 1959, Influence of asphyxia on membrane potential level and action potentials of spinal moto-and interneurons. Acta Physiol. Scand. 45: 1–18.CrossRefGoogle Scholar
  67. 66.
    Kostyuk, P.G., 1984, Metabolic control of ionic channels in the neuronal membrane. Neuroscience, 13: 983–989.CrossRefGoogle Scholar
  68. 67.
    Kraig, R.P., Chesler, M., 1988, Dynamics of volatile buffers in brain cells during spreading depression. (this volume, pp. 279–289).Google Scholar
  69. 68.
    Kreisman, N.R., 1988, Cerebral hypoxia during repetitive seizures. (This volume, pp. 139–149).Google Scholar
  70. 69.
    Krnjevic, K., Leblond, J., 1987, Mechanism of hyperpolarizing response if hippocampal cells to anoxia in isolated slices of rat hippocampus. J. Physiol. 382: 79 P.Google Scholar
  71. 70.
    Krnjevic, K., Leblond, J., 1988, Anoxia reversibly inactivates hippocampal Ca-currents. (This volume, pp. 183–190).Google Scholar
  72. 71.
    Lauritzen, M., 1988, Blood flow and metabolism in cortical spreading depression. (This volume, pp. 269–277).Google Scholar
  73. 72.
    Lee, K.S., Kreutzberg, G.W., 1988, Adenosine neuromodulation in the selectively vulnerable CA1 region of the hippocampus. (This volume, pp. 413–418).Google Scholar
  74. 73.
    Lee, K.S., Schubert, P., Heinemann, U., 1984, The anticonvulsive action of adenosine: a post-synaptic, dendritic action by a possible endogenous anticonvulsant. Brain Res. 321: 160–164.CrossRefGoogle Scholar
  75. 74.
    Lehmenk_hler,., Caspers, H., Speckmann, E.-J., Bingmann, D., Lipinski, H.G., Kersting, U., Neurons, glia and ions in hypoxia, hypercapnia and acidosis. (This volume, pp. 153–164).Google Scholar
  76. 75.
    Lipton, P., Raley, K., Lobner, D., 1988, Long-term inhibition of synaptic transmission and macromolecular synthesis following anoxia in the rat hippocampal slice: interaction between Ca2+ and NMDA receptors. (This volume, pp. 229–249).Google Scholar
  77. 76.
    Lipton, P., Whittingham, T.S., 1984, Energy metabolism and brain slice function. In: R. Dingledine (ed): Brain Slices. Plenum, New York. pp. 113–153.CrossRefGoogle Scholar
  78. 77.
    Lloyd, D.P.C., 1953, Influence of asphyxia upon the responses of spinal motoneurons. J. gen. Physiol. 36: 673–702.CrossRefGoogle Scholar
  79. 78.
    Lucas, D.R., Newhouse, J.P., 1957, The toxic effect of sodium-l-glutamate on the inner layers of the retina. A.M.A. Arch. Ophthalmol. 58: 193–201.CrossRefGoogle Scholar
  80. 79.
    Machlin, L.J., Bendich, A., 1987, Free radical tissue damage:protective role of antioxidant nutrients. FASEB Journal 1: 441–445.Google Scholar
  81. 79b.
    Magnusson, K., Gustafsson, I., Westerbdrg, E., Wieloch, T., 1988, Neurotransmitter modulation of neuronal damage following cerebral ischemia. Effects on protein ubiquitination. ( This volume, pp. 309–319 ).Google Scholar
  82. 80.
    Marranes, R., De Prins, E., Willems, R., Wauquier, A., 1988, NMDA antagonists inhibit cortical spreading depression, but accelerate the onset of neuronal depolarization induced by asphyxia. (This volume, pp. 303–304).Google Scholar
  83. 81.
    Meier-Ruge, W., Theodore, D., Abraham, J., 1988, Pathology of ischaemic brain damage - implications for therapy. (This volume, pp. 73–81).Google Scholar
  84. 82.
    Meldrum, B.S., 1981, Metabolic effects of prolonged epileptic seizures and the causation of epileptic brain damage. In: F.C. Rose (ed), Metabolic disorders of the nervous system, Pitman, London, pp. 175–187.Google Scholar
  85. 83.
    Meldrum, B., Evans, M., Swan, J., 1988, Excitatory amino acid transmission and protection against brain damage. (This volume, pp. 349–358).Google Scholar
  86. 84.
    Meldrum, B., Griffiths, T., Evans, M., 1982, Hypoxia and neuronal hyperexcitability–a clue to mechanisms of brain protection. In: A. Wauquier (ed): Protection of tissues against hypoxia. Elsevier, Amsterdam, pp. 275–286.Google Scholar
  87. 85.
    Misgeld, U., Frotscher, M., 1982, Dependence of the viability of neurons in hippocampal slices on oxygen supply. Brain Res. Bull. 8: 95–100.Google Scholar
  88. 86.
    Moghaddam, B., Schenk, J.O., Stewart, W.B., Hansen, A.., 1987, Temporal relationship between neurotransmitter release and ion flux during spreading depression and anoxia. Can. J. Physiol. Pharmacol. 65: 1105–1110Google Scholar
  89. 87.
    Mohr, J.P., C. M. Fisher, R.D. Adams, 1977, Cerebrovascular diseases. in: G. W. Thorn et al. (eds): Harrison’s Principles of Internal Medicine, McGraw Hill, New York, 8th Edition, pp. 1832–1868.Google Scholar
  90. 88.
    Moore, J.W., Hines, M., 1986, Some consequences of intracellulr calcium binding on phasic transmitter release. In: R. Rahamimoff and B. Katz (eds): Calcium, neuronal function and transmitter release. M. Nijhoff, Boston, pp. 115–137.CrossRefGoogle Scholar
  91. 89.
    Morris, M.E., Krnjevic, K., McDonald, J.F., 1985, Changes in intracellular free calcium ion concentration evoked by electrical activity in cat spinal neurons in situ. Neuroscience, 14: 563–580.CrossRefGoogle Scholar
  92. 90.
    Moskalenko, Y.E., Weinstein, G.B., Parfenov, V.E., Bodo’, M., Gaidar, B.V., 1988, Cerebral blood flow, and its responsiveness to CO2 after traumatic and ischemic brain injuries. (This volume, pp. 135–136).Google Scholar
  93. 91.
    Myers, R.E., 1981, High lactic acid, not reduced ATP: cause of brain injury from oxygen deprivation. Exc. Med. Internat’l Congr. Ser. no. 532: 231–236.Google Scholar
  94. 92.
    Nelson, P.G., Frank, K., 1963, Intracellularly recorded responses of nerve cells to oxygen deprivation. Am. J. Physiol. 205: 208–212.Google Scholar
  95. 93.
    Nicholson, C., Ten Bruggencate, G., Steinberg, R., Stockle, H., 1977, Calcium modulation in brain extracellular microenvironment demonstrated with ion selective micropipette. Proc. Nat’l Acad. Sci. USA, 74: 1287–1290.Google Scholar
  96. 94.
    Okada, Y., 1988, Reversibility of neuronal function of hippocampal slice during deprivation of oxygen and/or glucose. (This volume, pp. 191–203).Google Scholar
  97. 95.
    Olney, J.W., 1969, Brain lesions, obesity and other disturbances in mice treated with monosodium glutamate. Science, 164: 719–721.CrossRefGoogle Scholar
  98. 96.
    Pumain, R., Kurcewicz, I., Louvel, J., 1987, Ionic changes induced by excitatory amino acids in the rat cerebral cortex. Can. J. Physiol. Pharmacol. 65: 1067–1077.Google Scholar
  99. 97.
    Rader, R.K., Lanthom, T.H., Lipton, P.S., 1987, Effects of hypoxia on responses to acidic amino acids in the in vitro hippocampal slice. Soc. Neurosci. Abstr. 13: 1495.Google Scholar
  100. 98.
    Rehncrona, S., Westerberg, E., Akesson, B., Siesjo, B.K., 1982, Brain cortical fatty acids and phospholipids during and followinbg complete and severe incomplete ischemia. J. Neurochem., 38: 84–93.Google Scholar
  101. 99.
    Reid, K.H., Marranes, R., Wauquier, A., 1988, Effects of flunarizine on normal and injured rat cerebral cortex. (This volume, pp. 389–399).Google Scholar
  102. 100.
    Robinson, M.B., Coyle, J.Y., 1987, Glutamate and related acidic excitatory transmitters: from basic science to clinical applications. FASEB J., 1: 446–455.Google Scholar
  103. 101.
    Rosenthal, M., Zi-Cai Feng, Sick, T.J., 1988, Brain vulnerability and survival during anoxia: protective strategies of hypoxia-resistant vertebrates. (This volume, pp. 9–21).Google Scholar
  104. 102.
    Rothman, S.M., 1985, The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J. Neurosci., 5: 1483–1489Google Scholar
  105. 103.
    Rothman, S.M., Olney, J.W., 1987, Excitotoxicity and Trends Neurosci. 10: 299–302.CrossRefGoogle Scholar
  106. 104.
    Roufa, D.G., Lanthom, T.H., Rader, R.K., Rapp, S.R., Protection of hippocampal neurons from “ischemic” amino acid antagonists. (This volume, pp. 367–376).Google Scholar
  107. 104B.
    D. Sauer, G.W. Bielenberg, J. Nuglisch, T. Beck, H.D. Mennel, C. Rossberg and J. Krieglstein, 1988, Improvement of postischemic cell damage and energy metabolism in the rat by flunarizine and emopamil. (This volume, pp. 401–402).Google Scholar
  108. 105.
    Schanne, F.A.X., Kane, A.B., Young, E.E., Faber, J.L., 1979, Calcium dependence of toxic death: a final common pathway. Science, 206: 700–702.CrossRefGoogle Scholar
  109. 105B.
    D. Scheller, F. Tegtmeier, C. Weber, U. Peters, I. Haker, E. Zacharias and M. Holler, 1988, Electrophysiological and biochemical events in the isolated perfused rat brain under ischemia and reperfusion. (This volume, p. 307).Google Scholar
  110. 106.
    Schiff, S.J., Somjen, G.G., 1987, The effect of graded hypoxia on the hippocampal slice: an in vitro model of the ischemic penumbra. Stroke, 18: 30–37.CrossRefGoogle Scholar
  111. 107.
    Schiff, S.J., Somjen, G.G., 1988, Reversible synaptic blockade caused by hypoxia of moderate degree in hippocampal tissue slices. (This volume, pp. 175–182).Google Scholar
  112. 108.
    Schlander, M., Hoyer, S., Frotscher, M., 1987, GABAergic neurons are more resistant to ischemia than CA1 pyramidal cells in the rat hippocampus. Neuroscience 22 (Suppl): S123.Google Scholar
  113. 109.
    Schmidt-Kastner, R., Paschen, W., Szymas, J., Hossmann, K.-A., 1988, Ischemic damage of rat hipocampus and basal ganglia: light microscopical and biochemical changes. (This volume, pp. 83–90).Google Scholar
  114. 110.
    Schurr, A., Dong, W.-Q., Reid, K.H., West, C.A., Rigor, B.M., 1987, Lack of adverse effect of lactic acid on hypoxic neuronal tissue in vitro. Neuroscience 22 (Suppl): S744.Google Scholar
  115. 111.
    Shen, A.C. Jennings, R.B., 1972, Myocardial calcium and magnesium in acute ischaemic injury. Am. J. Pathol. 67: 417–440.Google Scholar
  116. 112.
    Sick, T.J., Roberts, E.L., 1988, Anoxia in CA1 pyramidal cells: Ionic and metabolic factors contributing to recovery of ion transport and snaptic transmission. ( This volume, pp. 219–227 ).Google Scholar
  117. 113.
    Siebke, H., Breivik, H., Rold, T., Lind, B., 1975, Survival after 40 minutes submersion without cerebral sequelae. Lancet, 1: 1275–1277.CrossRefGoogle Scholar
  118. 114.
    Siemkowicz, E., Hansen, A.J., 1981, Brain extracellular ion composition and EEG activity following 10 minutes of ischemia in normo-and hyperglycemic rats. Stroke, 12: 236–240.CrossRefGoogle Scholar
  119. 115.
    Siesjo, B.K., 1981, Cell damage in the brain: a speculative synthesis. J. Cereb. Blood Fl. Metabol. 1: 155–185.CrossRefGoogle Scholar
  120. 116.
    Siesjo, B.K., 1988, Mechanisms of ischemic brain damage. Crit. Care Med., (In press).Google Scholar
  121. 117.
    Siesjo, B.K., Wieloch, T., 1985, Molecular mechanisms of ischemic brain damage: Ca2+-related events. In: F. Plum and W. Pulsinelli (eds): Cerebrovascular deiseases. Raven Press, New York, pp. 187–200.Google Scholar
  122. 118.
    Slater, T.F., 1972, Free radical mechanisms in tissue ‘injury. Pion, London.Google Scholar
  123. 119.
    Sloviter, R.S., Damiano, B.P., 1981, Sustained electrical stimulation of the perforant path duplicates kainate-induced electrophysiological effects and hippocampal damage in rats. Neurosci. Lett., 24: 279–284.CrossRefGoogle Scholar
  124. 120.
    Smith, M.-L., Siesjo“, B.K., 1988, Acidosis-related brain damage and delayed events. (This volume, pp. 57–71).Google Scholar
  125. 121.
    Somjen, G.G., 1987, Spinal seizures induced by convulsant drugs. In: G.H. Fromm et al. (eds), Epilepsy and the reticular formation, Alan Liss, New York, pp. 93–118.Google Scholar
  126. 122.
    Somjen, G.G., Schiff, S.J., Aitken, P.G., Balestrino, M., 1987, Forms of suppression of neuronal function: Leaos depression, hypoxia and hyperthermia. In: N. Chalazonitis and M. Gola (eds): Inactivation of hypersensitive neurons. Alan Liss, New York, pp. 137–145.Google Scholar
  127. 123.
    Spielmeyer, W., 1929, Uber o“rtliche Vulnerabilita”t. Z. Ges. Neurol. Psychiatr. 118: 1–16.CrossRefGoogle Scholar
  128. 124.
    Sugar, O., Gerard, R.W., 1938, Anoxia and brain potentials. J. Neurophysiol. 1: 558–572.Google Scholar
  129. 125.
    Suzuki, J., Mizoi, K., Abiko, H., Ogasawara, K., Oba, M., Yoshimoto, T., 1988, The limits of reversibility from ischemic insult and our method of prolonging cerebral survival. (This volume, pp. 337–348).Google Scholar
  130. 126.
    Suzuki, R., Yamaguchi, T., Inaba, Y., Wagner, H.G., 1985, Microphysiology of selectively vulnerable neurons. Progr. Brain Res., 63: 59–68.CrossRefGoogle Scholar
  131. 127.
    Swan, J.H., Evans, M.C., Meldrum, B.S., 1988, Long-term development of selective neuronal loss and the mechanism of protection by 2-amino-7phosphonohetanoate in a rat model of incomplete forebrain ischemia, J. Cereb. Blood Fl. Metab. 8: 64–78.CrossRefGoogle Scholar
  132. 128.
    Symon, L., 1988, Physiological aspects of brain ischaemia in the experimental primate and man. (This volume, pp. 91–107).Google Scholar
  133. 129.
    Urbanics, R., Greenberg, J.H., Reivich, M., 1988, Microcirculation, NAD/NADH fluorescence, extracellular potassium and glucose metabolism changes in focal cerebral ischemia. ( This volume, pp. 151–152 )Google Scholar
  134. 130.
    Van Harreveld, A., 1946, Asphyxial depolarization of the spinal cord. Am. J. Physiol. 147: 669–682.Google Scholar
  135. 131.
    Van Harreveld, A., 1959, Compounds in brain extracts causing spreading depression of cerebral cortical activity and contraction of crustacean muscle. J. Neurochem. 3: 300–315CrossRefGoogle Scholar
  136. 132.
    Van Wylen, D.G.L., Park, T.S., Rubio, R., Berne, R.M., 1986, Increases in cerebrospinal fluid adenosine concentration during hypoxia, local potassium infusion and ischemia. J.Cerebr. Blood Fl. Metab. 6: 522–528.CrossRefGoogle Scholar
  137. 133.
    Vicedomini, J.P., Nadler, J.V., 1987, A model of status epilepticus based on electrical stimulation of hippocampal afferent pathways. Exper. Neurol. 96: 681–691.CrossRefGoogle Scholar
  138. 134.
    Vogt, C., Vogt, 0., 1937, Sitz und Wesen der Krankheiten im Lichte der topischen Hirnforschung und des Variieren der Tiere. J. Psychol. Neurol. 47: 237–457.Google Scholar
  139. 135.
    West, C.A., Schurr, A., Reid, K.H., Shields, C.B., 1986, Protection against hypozia by high glucose; a study using the in vitro hippocampal slice. Soc. Neurosci. Abstr. 12: 1526.Google Scholar
  140. 136.
    Wrogeman, K., Penna, S.D.J., 1976, Mitochondrial calcium overload: a general mechanism for cell-necrosis in muscle diseases. Lancet, 1: 672–673.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • George G. Somjen
    • 1
  1. 1.Department of PhysiologyDuke University Medical CenterDurhamUSA

Personalised recommendations