Skip to main content

Basic Mechanisms in Cerebral Hypoxia and Stroke: Background, review and conclusions

  • Chapter
Mechanisms of Cerebral Hypoxia and Stroke

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 35))

Summary

This chapter reviews material presented at the Symposium and also pertinent literature, seeking answers to three sets of problems: 1. the mechanism of the reversible blockade of synapses in the early stages of hypoxia and ischemia of the central nervous system (CNS); 2. the irreversible injury of neurons during more prolonged severe hypoxia or ischemia; and 3. the delayed cell death that occurs after reoxygenation or reperfusion of previously hypoxic or ischemic brain tissue. During the reversible phase pre- and postsynaptic factors interact to block all synapses, excitatory as well as inhibitory. On the presynaptic side voltage-dependent calcium channels appear blocked in hypoxic presynaptic terminals. Postsynaptically many though not all types of neurons become hyperpolarized, which raises their firing threshold. Hyperpolarization is due to increased K+ −conductance. Acidosis may play a part by raising the threshold of postsynaptic neurons. Cells may be irreversibly injured through several different pathologic processes. Elevation of free intracellular calcium ([Ca2+]i) above a critical level for a critical length of time appears to trigger, or at least hasten, some of these injurious processes. The elevation of [Ca2+]i during severe hypoxia is due to the explosive, spreading depression (SD)-like, depolarization of neurons. Factors contributing to the delayed post-hypoxic or post-ischemic cell death may include excitatory amino acid (EAA)-induced firing, reactive hyperemia and/or hypoxic damage to blood vessels resulting in vasogenic edema and secondary vascular failure, aggravated by lactic acidosis. In the striatum dopamine is required for the damage that EAAs cause in the hippocampus. Adenosine and noradrenaline appear to be endogenous prophylactic agents protecting CNS neurons. Opinions are divided concerning the role of free radicals and peroxide in cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D.J., Takeda, K., Umbach, J.A., 1985, Inhibitors of calcium buffering depress evoked transmitter release at the squid giant synapse. J. Physiol., 369: 145–159.

    Google Scholar 

  2. Ames, A., Wright, R.L., Kowada, M., Thurston, J.M., Majno, G., 1968, Cerebral ischemia: The no-reflow phenomenon. Am. J. Pathol., 52: 437–453.

    Google Scholar 

  3. Ashton, D., Van Belle, H., Wynants, J., Willems, R., Wauquier, A., Janssen, P.A.J., 1988, The nuceloside-transport inhibitor, mioflazine, increases recovery of hippocampal synaptic transmission and energy-rich metabolites after normothermic global ischemia. (This volume, pp. 419–422).

    Google Scholar 

  4. Astrup, J. Rehncrona, S., Siesjo, B.K., 1980, The increase in extracellular potassium concentration in the ischemic brain in relation to preischemic activity and cerebral metabolic rate. Brain Res., 199: 161–174.

    Article  Google Scholar 

  5. Balentine, J.D., Spector, M., 1977, Calcification of axons in experimental spinal cord trauma. Ann. Neurol. 2: 520–523.

    Article  Google Scholar 

  6. Balestrino, M., Aitken, P.G., Jones, L.S., Somjen, G.G., 1988, The role of spreading depression-like hypoxic depolarization in irreversible neuron damage, and its prevention. (This volume, pp. 291–301).

    Google Scholar 

  7. Balestrino, M., Somjen, G.G., 1988, Concentration of carbon dioxide, interstitial pH and synaptic transmission in hippocampal formation of the rat. J. Physiol. 396: 247–266.

    Google Scholar 

  8. Bazan, N.G., 1970, Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta, 218: 1–10.

    Google Scholar 

  9. Benesova, O., Buresova, O., and Bures, J., 1957, Die Wirkung des Chlorpromazins und der Glykamie auf das elektrophysiologisch kontrollierte Uberleben der Hirnrinde bei verschiedenen Korpertemperaturen. Arch. Exp. Pathol. Pharmakol. 231: 550–561.

    Article  Google Scholar 

  10. Benveniste, H., Drejer, J., Schousboe, A., Diemer, N.H., 1984, Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43: 1369–1374.

    Article  Google Scholar 

  11. Biersteker, P.A., Collewijn, H., Van Harreveld, A., 1966, Asphyxial potentials of spinal grey matter and of ventral and dorsal roots. J. Physiol. 185: 15–29.

    Google Scholar 

  12. Biscoe, T.J., Duchen, M.R., Eisner, D.A., O’Neill, S.C., Valdeolmillos, M., 1988, The effects of glucose removal and cyanide on intracellular Ca in isolated, single mouse dorsal root ganglion cells. J. Physiol. 401: 60 P.

    Google Scholar 

  13. Block, G.A., Pulsinelli, W.A., 1988, Excitatory amino acid and purinergic transmitter involvement in ischemia-induced selective neuronal death. (This volume, pp. 359–365).

    Google Scholar 

  14. Bosley, T.M., Woodhams, P.L., Gordon, R.D., Bala’zs, R., 1983, Effects of anoxia on the stimulated release of amino acid neurotransmitters in the cerebellum in vitro. J. Neurochem., 40: 189–201.

    Article  Google Scholar 

  15. Brierly, J.B., 1976, Cerebral Hypoxia. In: W. Blackwood and J.A.N. Corsellis (eds): Greenfield’s Neuropathology, 3rd Ed., Ed. Arnold, London, pp. 43–85.

    Google Scholar 

  16. Bures, J. Buresova, 0., 1988, Susceptibility to spreading depression and anoxia: Regional differences and drug control. ( This volume, pp. 253–267 ).

    Google Scholar 

  17. Clark, G.D., Rothman, S.M., 1987, Blockade of excitatory amino acid receptors protects anoxic hippocampal slices. Neuroscience, 21: 665–671.

    Article  Google Scholar 

  18. Collewijn, H., Van Harreveld, A., 1966, Intracellular recording from spinal motoneurones during acute asphyxia. J. Physiol. 185: 1–14.

    Google Scholar 

  19. Crain, B.J., Nadler, V.J., 1988, Selective neuronal cell death after transient forebrain ischemia in the mongolina gerbil. (This volume, pp. 35–47).

    Google Scholar 

  20. Davis, J.N., Carlsson, A., 1973, The effect of hypoxia on monoamine synthesis, levels and metabolism in rat. J. Neurochem., 21: 783–790.

    Article  Google Scholar 

  21. De Courten, G.M., Yamaguchi, S., Myers, R.E., 1981, Influence of serum glucose concentration upon rapidity of circulatory failure during hypoxia and brain inury in cats. Exc. Med. Internat’l Congr. Series no. 532: 201–207.

    Google Scholar 

  22. Demopoulos, H., Flamm, E., Seligman, R., Power, R., Pietronigro, D., and Ransohoff, J., 1977, Molecular pathology of lipids in CNS membranes. In: F.F. Jobsis (ed): Oxygen and physiological function, Profess. Info. Libr. Dallas, pp. 491–504.

    Google Scholar 

  23. Deshpande, J.K., Siesjo, B.K., Wieloch, T., 1987, Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia. J. Cereb. Blood Flow Metab. 7: 89–95.

    Article  Google Scholar 

  24. Deshpande, J., Wieloch, T., 1985, Amelioration of ischemic brain damage by postischemic treatment with flunarizine. Neurol. Res., 7: 27–29.

    Google Scholar 

  25. Dolphin, A.C., Archer, E.R., 1983, An adenosine agonist inhibits and a cyclic AMP analogue enhances the release of glutamate but not GABA from slices of rat dentate gyms. Neurosci. Lett., 43: 49–54.

    Article  Google Scholar 

  26. Dora, E., Kovach, A.G.B., Greenberg, J.H., Tanaka, K., Gonatas, N.H., Reivich, M., 1988, Microcirculation and metabolism in reversible and irreversible cerebral ischemia. (This volume, pp. 119–133).

    Google Scholar 

  27. Duchen, M.R., Somjen, G.G., 1988, Effects of cyanide and low glucose on the membrane currents of dissociated mouse primary sensory neurones. J. Physiol. 401: 61 P.

    Google Scholar 

  28. Duffy T.E., Nelson, S.R., Lowry, O.H., 1972, Cerebral carbohydrate metabolism during acute hypoxia and recovery. J. Neurchem. 19: 959–977.

    Article  Google Scholar 

  29. Dunwiddie, T.V., Hoffer, B.J., 1980, Adenine nucleotides and synaptic transmission in the in vitro rat hippocampus. Brit. J. Pharmacol., 69: 59–68.

    Google Scholar 

  30. Dupont, J.L., Bossu, J.L., Feltz, A., 1986, Effect of internal calcium concentration on calcium currents in rat sensory neurones. Pflug. Arch. 406: 433–435.

    Article  Google Scholar 

  31. Dux, E., Mies, G., Hossmann, K.-A., Siklos, L., 1987, Calcium in the mitochondria following brief ischemia of grebil brain. Neurosci. Lett. 78: 295–300.

    Article  Google Scholar 

  32. Dux, E., Temesvari, P., Joo, F., Szerdahelyi, P., 1988, Cerebroprotective effect of histamine receptor blockers in hypoxia-induced experimental brain edema. (this volume, p. 427).

    Google Scholar 

  33. Eccles, R.M., Loyning, Y., Oshima, T., 1966, Effects of hypoxia on the monoysnaptic reflex pathway in the cat spinal cord. J. Neurophysiol. 29: 315–3 22.

    Google Scholar 

  34. Eckert, R., Chad, J.E., 1984, Inactivation of calcium channels. Progr. Biophys. Molec. Biol. 44: 215

    Article  Google Scholar 

  35. Farber, J.L., El-Mofty, S.K., 1975, The biochemical pathology of liver cell necrosis. Am. J. Pathol. 81: 237–250.

    Google Scholar 

  36. Fleckenstein, A., 1971, Specific inhibitors and promoters of calcium action in the excitation-contraction coupling of heart muscle and their role in the prevention or production of myocardial lesions. In: P. Harris and L. Opie (eds): Calcium and the heart. Academic Press, London, pp. 135–188.

    Google Scholar 

  37. Fridovich, I., 1979, Hypoxia and oxygen toxicity. Adv. Neurol. 26: 255–259.

    Google Scholar 

  38. Gibson, G.E., Duffy, T.E., 1981, Impaired synthesis of acetylcholine by mildhypoxic hypoxia or nitrous oxide. J. Neurochem., 36: 28–33.

    Article  Google Scholar 

  39. Globus, M.Y.-T., Ginsberg, M.D., Busto, R., Dietrich, W.D., Martinez, E., Valdez, I., and Scheinberg, P., 1988, Dopamine and the susceptibility of striatal neurons to ischemia. (This volume, pp. 379–388)

    Google Scholar 

  40. Glotzner, F., 1967, Intracellulare Potentiale, EEG und corticale Gleichspannung and der sensorimotorischen Rinde der Katze bei akuter Hypoxie. Arch. Psychiatr. Nervenkr. 210: 274–296.

    Article  Google Scholar 

  41. Godfraind, J.M., Kawamura, H., Krnjevic, K., Pumain, R., 1971, Actions of dinitrophenol and some other metabolic inhibitors on cortical neurones. J. Physiol. 215: 199–222.

    Google Scholar 

  42. Graf, R., Heiss, W.-D., Kataoka, K., Rosner, G., Wakayama, A., 1988, The dependence of cerebral ischemic damage on duration and severity of ischemia: Studies of single cell activity and multimodally evoked responses. ( This volume, pp. 109–117 ).

    Google Scholar 

  43. Greene, R.W., Haas, H.L., 1985, Adenosine actions on CA1 pyramidal neurones in rat hippocampal slices. J. Physiol., 366: 119–127.

    Google Scholar 

  44. Grossman, R.G., Williams, V.F., 1971, Electrical activity and ultrastructure of cortical neurons and snapses in ischemia. Clinics Develop. Med. 39–40: 61–75.

    Google Scholar 

  45. Gurdjian, E.S., Stone, W.E., Webster, M.J., 1944, Cerebral metabolism in hypoxia. A.M.A. Arch’s Neurol. Psychiat. 51: 472–477.

    Google Scholar 

  46. Hansen, A.J., 1985, Effect of anoxia on ion distribution in the brain. Physiol. Rev. 65: 101–148.

    Google Scholar 

  47. b. Hansen, A.J., 1988, ffects of anoxia on nerve cell function. (This volume, pp. 165–173).

    Google Scholar 

  48. Hansen, A.J., Hounsgaard, J., Jahnsen, H., 1982, Anoxia increases potassium conductance in hippocampal nerve cells. Acta Physiol. Scand. 115: 301–310.

    Article  Google Scholar 

  49. Harris, R.J., Symon, L., Branston, N.M., Bayhan, M., 1981, Changes in extracellular calcium activity in cerebral ischemia. J. Cereb. Blood Flow Metab. 1: 203–209.

    Article  Google Scholar 

  50. Hass, W.K., 1981, Beyond cerebral blood flow, metabolism and ischemic thresholds: an examination of the rle of calcium in the initiatio of cerebral infarction. Excerpta Med. Internat’l Congr. Ser. no. 532: 3–17.

    Google Scholar 

  51. Hernandez-Ca’ceres, J., Marcias-Gonzales, R., Brozek, G., Bures, J., 1987, Systemic ketamine blocks cortical spreading depression but does not delay the onset of terminal anoxic depolarization in rats. Brain Res., 437: 360–364.

    Article  Google Scholar 

  52. Higashi, H., Sugita, S., Nishi, S., Shimoji, K., 1988, The effect of hypoxia on hippocampal neurones and its prevention by Ca2+-antagonists. (This volume, pp. 205–218).

    Google Scholar 

  53. Hille, B., 1984, Ionic channels of excitable membranes. Sinauer Ass., Sunderland, Massachusetts, pp. 87–89.

    Google Scholar 

  54. Hochachka, P.W., 1988, Inborn resistance to hypoxa and the O2_dependence of metabolism. (This volume, pp 1–7).

    Google Scholar 

  55. Imaizumi, S., Tominaga, T., Uenohara, H., Kinouchi, H., Yoshimoto, T., Suzuki, J., 1988, Detection of free radicals in cerebral tissue and their relation to cerebral hypoxia/ischemia. (This volume pp. 321–335).

    Google Scholar 

  56. Johansen, F.F., Zimmer, J., Diemer, N.H., 1987, Early loss of somatostatin neurons in dentate hilus after cerebral ischemia in the rat precedes CA-1 pyramidal cell loss. Acta neuropathol. 73: 110–114.

    Article  Google Scholar 

  57. Johansen, F.F., Zimmer, J., Diemer, N.H., 1988, Possible implications of ischemic damage to dentate hilar somatostatin neurons in the rat. (This volume, p. 49).

    Google Scholar 

  58. Judah, J.D., Ahmed, K., McLean, A.E.M., 1964, Possible role of ion shifts in liver injury. In: A.S. de Reuck and J. Knight (eds): CIBA Foundation Symposium on cellular injury. Little, Borown & Co., Boston, pp. 187–205.

    Google Scholar 

  59. Jung, R., 1953, Hirnelektrische Befunde bei Kreislaufstorungen und Hypoxieschaden des Gehirns. Verh. Deutsch. Ges. Kreisl.-Forsch. 19: 170–196

    Google Scholar 

  60. Kandel, E.R., 1981, Calcium and the control of synaptic strength by learning. Nature, 293: 697–699.

    Article  Google Scholar 

  61. Kawasaki, K., Cze’h, G., Somjen, G.G., 1988, Does Lea—o’s spreading depression cause irreversible brain damage? (This volume, pp. 305–306).

    Google Scholar 

  62. Kirino, T., Tamura, A., Sano, K., 1988, Early and late neuronal damage following cerebral ischemia. (This volume, pp. 23–34).

    Google Scholar 

  63. Klatzo, I., 1988, Role of edema in pathophysiology of ischemic injury. (This volume, pp. 53–56).

    Google Scholar 

  64. Kogure, K., Arai, H., Abe, K., Nakano, M., 1985, Free radical damage of the brain following ischemia. Progr. Brain Res. 65: 237–259.

    Article  Google Scholar 

  65. Kogure, K., Hossmann, K.-A., Siesj_, B.K., Welsh, F.A., 1985, Molecular mechanisms of ischemic brain damage. Progr. Brain Res. Vol. 65, Elsevier, Amsterdam, 264 pp.

    Google Scholar 

  66. Kolmodin, G.M., Skoglund, C.R., 1959, Influence of asphyxia on membrane potential level and action potentials of spinal moto-and interneurons. Acta Physiol. Scand. 45: 1–18.

    Article  Google Scholar 

  67. Kostyuk, P.G., 1984, Metabolic control of ionic channels in the neuronal membrane. Neuroscience, 13: 983–989.

    Article  Google Scholar 

  68. Kraig, R.P., Chesler, M., 1988, Dynamics of volatile buffers in brain cells during spreading depression. (this volume, pp. 279–289).

    Google Scholar 

  69. Kreisman, N.R., 1988, Cerebral hypoxia during repetitive seizures. (This volume, pp. 139–149).

    Google Scholar 

  70. Krnjevic, K., Leblond, J., 1987, Mechanism of hyperpolarizing response if hippocampal cells to anoxia in isolated slices of rat hippocampus. J. Physiol. 382: 79 P.

    Google Scholar 

  71. Krnjevic, K., Leblond, J., 1988, Anoxia reversibly inactivates hippocampal Ca-currents. (This volume, pp. 183–190).

    Google Scholar 

  72. Lauritzen, M., 1988, Blood flow and metabolism in cortical spreading depression. (This volume, pp. 269–277).

    Google Scholar 

  73. Lee, K.S., Kreutzberg, G.W., 1988, Adenosine neuromodulation in the selectively vulnerable CA1 region of the hippocampus. (This volume, pp. 413–418).

    Google Scholar 

  74. Lee, K.S., Schubert, P., Heinemann, U., 1984, The anticonvulsive action of adenosine: a post-synaptic, dendritic action by a possible endogenous anticonvulsant. Brain Res. 321: 160–164.

    Article  Google Scholar 

  75. Lehmenk_hler,., Caspers, H., Speckmann, E.-J., Bingmann, D., Lipinski, H.G., Kersting, U., Neurons, glia and ions in hypoxia, hypercapnia and acidosis. (This volume, pp. 153–164).

    Google Scholar 

  76. Lipton, P., Raley, K., Lobner, D., 1988, Long-term inhibition of synaptic transmission and macromolecular synthesis following anoxia in the rat hippocampal slice: interaction between Ca2+ and NMDA receptors. (This volume, pp. 229–249).

    Google Scholar 

  77. Lipton, P., Whittingham, T.S., 1984, Energy metabolism and brain slice function. In: R. Dingledine (ed): Brain Slices. Plenum, New York. pp. 113–153.

    Chapter  Google Scholar 

  78. Lloyd, D.P.C., 1953, Influence of asphyxia upon the responses of spinal motoneurons. J. gen. Physiol. 36: 673–702.

    Article  Google Scholar 

  79. Lucas, D.R., Newhouse, J.P., 1957, The toxic effect of sodium-l-glutamate on the inner layers of the retina. A.M.A. Arch. Ophthalmol. 58: 193–201.

    Article  Google Scholar 

  80. Machlin, L.J., Bendich, A., 1987, Free radical tissue damage:protective role of antioxidant nutrients. FASEB Journal 1: 441–445.

    Google Scholar 

  81. Magnusson, K., Gustafsson, I., Westerbdrg, E., Wieloch, T., 1988, Neurotransmitter modulation of neuronal damage following cerebral ischemia. Effects on protein ubiquitination. ( This volume, pp. 309–319 ).

    Google Scholar 

  82. Marranes, R., De Prins, E., Willems, R., Wauquier, A., 1988, NMDA antagonists inhibit cortical spreading depression, but accelerate the onset of neuronal depolarization induced by asphyxia. (This volume, pp. 303–304).

    Google Scholar 

  83. Meier-Ruge, W., Theodore, D., Abraham, J., 1988, Pathology of ischaemic brain damage - implications for therapy. (This volume, pp. 73–81).

    Google Scholar 

  84. Meldrum, B.S., 1981, Metabolic effects of prolonged epileptic seizures and the causation of epileptic brain damage. In: F.C. Rose (ed), Metabolic disorders of the nervous system, Pitman, London, pp. 175–187.

    Google Scholar 

  85. Meldrum, B., Evans, M., Swan, J., 1988, Excitatory amino acid transmission and protection against brain damage. (This volume, pp. 349–358).

    Google Scholar 

  86. Meldrum, B., Griffiths, T., Evans, M., 1982, Hypoxia and neuronal hyperexcitability–a clue to mechanisms of brain protection. In: A. Wauquier (ed): Protection of tissues against hypoxia. Elsevier, Amsterdam, pp. 275–286.

    Google Scholar 

  87. Misgeld, U., Frotscher, M., 1982, Dependence of the viability of neurons in hippocampal slices on oxygen supply. Brain Res. Bull. 8: 95–100.

    Google Scholar 

  88. Moghaddam, B., Schenk, J.O., Stewart, W.B., Hansen, A.., 1987, Temporal relationship between neurotransmitter release and ion flux during spreading depression and anoxia. Can. J. Physiol. Pharmacol. 65: 1105–1110

    Google Scholar 

  89. Mohr, J.P., C. M. Fisher, R.D. Adams, 1977, Cerebrovascular diseases. in: G. W. Thorn et al. (eds): Harrison’s Principles of Internal Medicine, McGraw Hill, New York, 8th Edition, pp. 1832–1868.

    Google Scholar 

  90. Moore, J.W., Hines, M., 1986, Some consequences of intracellulr calcium binding on phasic transmitter release. In: R. Rahamimoff and B. Katz (eds): Calcium, neuronal function and transmitter release. M. Nijhoff, Boston, pp. 115–137.

    Chapter  Google Scholar 

  91. Morris, M.E., Krnjevic, K., McDonald, J.F., 1985, Changes in intracellular free calcium ion concentration evoked by electrical activity in cat spinal neurons in situ. Neuroscience, 14: 563–580.

    Article  Google Scholar 

  92. Moskalenko, Y.E., Weinstein, G.B., Parfenov, V.E., Bodo’, M., Gaidar, B.V., 1988, Cerebral blood flow, and its responsiveness to CO2 after traumatic and ischemic brain injuries. (This volume, pp. 135–136).

    Google Scholar 

  93. Myers, R.E., 1981, High lactic acid, not reduced ATP: cause of brain injury from oxygen deprivation. Exc. Med. Internat’l Congr. Ser. no. 532: 231–236.

    Google Scholar 

  94. Nelson, P.G., Frank, K., 1963, Intracellularly recorded responses of nerve cells to oxygen deprivation. Am. J. Physiol. 205: 208–212.

    Google Scholar 

  95. Nicholson, C., Ten Bruggencate, G., Steinberg, R., Stockle, H., 1977, Calcium modulation in brain extracellular microenvironment demonstrated with ion selective micropipette. Proc. Nat’l Acad. Sci. USA, 74: 1287–1290.

    Google Scholar 

  96. Okada, Y., 1988, Reversibility of neuronal function of hippocampal slice during deprivation of oxygen and/or glucose. (This volume, pp. 191–203).

    Google Scholar 

  97. Olney, J.W., 1969, Brain lesions, obesity and other disturbances in mice treated with monosodium glutamate. Science, 164: 719–721.

    Article  Google Scholar 

  98. Pumain, R., Kurcewicz, I., Louvel, J., 1987, Ionic changes induced by excitatory amino acids in the rat cerebral cortex. Can. J. Physiol. Pharmacol. 65: 1067–1077.

    Google Scholar 

  99. Rader, R.K., Lanthom, T.H., Lipton, P.S., 1987, Effects of hypoxia on responses to acidic amino acids in the in vitro hippocampal slice. Soc. Neurosci. Abstr. 13: 1495.

    Google Scholar 

  100. Rehncrona, S., Westerberg, E., Akesson, B., Siesjo, B.K., 1982, Brain cortical fatty acids and phospholipids during and followinbg complete and severe incomplete ischemia. J. Neurochem., 38: 84–93.

    Google Scholar 

  101. Reid, K.H., Marranes, R., Wauquier, A., 1988, Effects of flunarizine on normal and injured rat cerebral cortex. (This volume, pp. 389–399).

    Google Scholar 

  102. Robinson, M.B., Coyle, J.Y., 1987, Glutamate and related acidic excitatory transmitters: from basic science to clinical applications. FASEB J., 1: 446–455.

    Google Scholar 

  103. Rosenthal, M., Zi-Cai Feng, Sick, T.J., 1988, Brain vulnerability and survival during anoxia: protective strategies of hypoxia-resistant vertebrates. (This volume, pp. 9–21).

    Google Scholar 

  104. Rothman, S.M., 1985, The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J. Neurosci., 5: 1483–1489

    Google Scholar 

  105. Rothman, S.M., Olney, J.W., 1987, Excitotoxicity and Trends Neurosci. 10: 299–302.

    Article  Google Scholar 

  106. Roufa, D.G., Lanthom, T.H., Rader, R.K., Rapp, S.R., Protection of hippocampal neurons from “ischemic” amino acid antagonists. (This volume, pp. 367–376).

    Google Scholar 

  107. D. Sauer, G.W. Bielenberg, J. Nuglisch, T. Beck, H.D. Mennel, C. Rossberg and J. Krieglstein, 1988, Improvement of postischemic cell damage and energy metabolism in the rat by flunarizine and emopamil. (This volume, pp. 401–402).

    Google Scholar 

  108. Schanne, F.A.X., Kane, A.B., Young, E.E., Faber, J.L., 1979, Calcium dependence of toxic death: a final common pathway. Science, 206: 700–702.

    Article  Google Scholar 

  109. D. Scheller, F. Tegtmeier, C. Weber, U. Peters, I. Haker, E. Zacharias and M. Holler, 1988, Electrophysiological and biochemical events in the isolated perfused rat brain under ischemia and reperfusion. (This volume, p. 307).

    Google Scholar 

  110. Schiff, S.J., Somjen, G.G., 1987, The effect of graded hypoxia on the hippocampal slice: an in vitro model of the ischemic penumbra. Stroke, 18: 30–37.

    Article  Google Scholar 

  111. Schiff, S.J., Somjen, G.G., 1988, Reversible synaptic blockade caused by hypoxia of moderate degree in hippocampal tissue slices. (This volume, pp. 175–182).

    Google Scholar 

  112. Schlander, M., Hoyer, S., Frotscher, M., 1987, GABAergic neurons are more resistant to ischemia than CA1 pyramidal cells in the rat hippocampus. Neuroscience 22 (Suppl): S123.

    Google Scholar 

  113. Schmidt-Kastner, R., Paschen, W., Szymas, J., Hossmann, K.-A., 1988, Ischemic damage of rat hipocampus and basal ganglia: light microscopical and biochemical changes. (This volume, pp. 83–90).

    Google Scholar 

  114. Schurr, A., Dong, W.-Q., Reid, K.H., West, C.A., Rigor, B.M., 1987, Lack of adverse effect of lactic acid on hypoxic neuronal tissue in vitro. Neuroscience 22 (Suppl): S744.

    Google Scholar 

  115. Shen, A.C. Jennings, R.B., 1972, Myocardial calcium and magnesium in acute ischaemic injury. Am. J. Pathol. 67: 417–440.

    Google Scholar 

  116. Sick, T.J., Roberts, E.L., 1988, Anoxia in CA1 pyramidal cells: Ionic and metabolic factors contributing to recovery of ion transport and snaptic transmission. ( This volume, pp. 219–227 ).

    Google Scholar 

  117. Siebke, H., Breivik, H., Rold, T., Lind, B., 1975, Survival after 40 minutes submersion without cerebral sequelae. Lancet, 1: 1275–1277.

    Article  Google Scholar 

  118. Siemkowicz, E., Hansen, A.J., 1981, Brain extracellular ion composition and EEG activity following 10 minutes of ischemia in normo-and hyperglycemic rats. Stroke, 12: 236–240.

    Article  Google Scholar 

  119. Siesjo, B.K., 1981, Cell damage in the brain: a speculative synthesis. J. Cereb. Blood Fl. Metabol. 1: 155–185.

    Article  Google Scholar 

  120. Siesjo, B.K., 1988, Mechanisms of ischemic brain damage. Crit. Care Med., (In press).

    Google Scholar 

  121. Siesjo, B.K., Wieloch, T., 1985, Molecular mechanisms of ischemic brain damage: Ca2+-related events. In: F. Plum and W. Pulsinelli (eds): Cerebrovascular deiseases. Raven Press, New York, pp. 187–200.

    Google Scholar 

  122. Slater, T.F., 1972, Free radical mechanisms in tissue ‘injury. Pion, London.

    Google Scholar 

  123. Sloviter, R.S., Damiano, B.P., 1981, Sustained electrical stimulation of the perforant path duplicates kainate-induced electrophysiological effects and hippocampal damage in rats. Neurosci. Lett., 24: 279–284.

    Article  Google Scholar 

  124. Smith, M.-L., Siesjo“, B.K., 1988, Acidosis-related brain damage and delayed events. (This volume, pp. 57–71).

    Google Scholar 

  125. Somjen, G.G., 1987, Spinal seizures induced by convulsant drugs. In: G.H. Fromm et al. (eds), Epilepsy and the reticular formation, Alan Liss, New York, pp. 93–118.

    Google Scholar 

  126. Somjen, G.G., Schiff, S.J., Aitken, P.G., Balestrino, M., 1987, Forms of suppression of neuronal function: Leaos depression, hypoxia and hyperthermia. In: N. Chalazonitis and M. Gola (eds): Inactivation of hypersensitive neurons. Alan Liss, New York, pp. 137–145.

    Google Scholar 

  127. Spielmeyer, W., 1929, Uber o“rtliche Vulnerabilita”t. Z. Ges. Neurol. Psychiatr. 118: 1–16.

    Article  Google Scholar 

  128. Sugar, O., Gerard, R.W., 1938, Anoxia and brain potentials. J. Neurophysiol. 1: 558–572.

    Google Scholar 

  129. Suzuki, J., Mizoi, K., Abiko, H., Ogasawara, K., Oba, M., Yoshimoto, T., 1988, The limits of reversibility from ischemic insult and our method of prolonging cerebral survival. (This volume, pp. 337–348).

    Google Scholar 

  130. Suzuki, R., Yamaguchi, T., Inaba, Y., Wagner, H.G., 1985, Microphysiology of selectively vulnerable neurons. Progr. Brain Res., 63: 59–68.

    Article  Google Scholar 

  131. Swan, J.H., Evans, M.C., Meldrum, B.S., 1988, Long-term development of selective neuronal loss and the mechanism of protection by 2-amino-7phosphonohetanoate in a rat model of incomplete forebrain ischemia, J. Cereb. Blood Fl. Metab. 8: 64–78.

    Article  Google Scholar 

  132. Symon, L., 1988, Physiological aspects of brain ischaemia in the experimental primate and man. (This volume, pp. 91–107).

    Google Scholar 

  133. Urbanics, R., Greenberg, J.H., Reivich, M., 1988, Microcirculation, NAD/NADH fluorescence, extracellular potassium and glucose metabolism changes in focal cerebral ischemia. ( This volume, pp. 151–152 )

    Google Scholar 

  134. Van Harreveld, A., 1946, Asphyxial depolarization of the spinal cord. Am. J. Physiol. 147: 669–682.

    Google Scholar 

  135. Van Harreveld, A., 1959, Compounds in brain extracts causing spreading depression of cerebral cortical activity and contraction of crustacean muscle. J. Neurochem. 3: 300–315

    Article  Google Scholar 

  136. Van Wylen, D.G.L., Park, T.S., Rubio, R., Berne, R.M., 1986, Increases in cerebrospinal fluid adenosine concentration during hypoxia, local potassium infusion and ischemia. J.Cerebr. Blood Fl. Metab. 6: 522–528.

    Article  Google Scholar 

  137. Vicedomini, J.P., Nadler, J.V., 1987, A model of status epilepticus based on electrical stimulation of hippocampal afferent pathways. Exper. Neurol. 96: 681–691.

    Article  Google Scholar 

  138. Vogt, C., Vogt, 0., 1937, Sitz und Wesen der Krankheiten im Lichte der topischen Hirnforschung und des Variieren der Tiere. J. Psychol. Neurol. 47: 237–457.

    Google Scholar 

  139. West, C.A., Schurr, A., Reid, K.H., Shields, C.B., 1986, Protection against hypozia by high glucose; a study using the in vitro hippocampal slice. Soc. Neurosci. Abstr. 12: 1526.

    Google Scholar 

  140. Wrogeman, K., Penna, S.D.J., 1976, Mitochondrial calcium overload: a general mechanism for cell-necrosis in muscle diseases. Lancet, 1: 672–673.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Somjen, G.G. (1988). Basic Mechanisms in Cerebral Hypoxia and Stroke: Background, review and conclusions. In: Somjen, G. (eds) Mechanisms of Cerebral Hypoxia and Stroke. Advances in Behavioral Biology, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5562-5_52

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5562-5_52

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5564-9

  • Online ISBN: 978-1-4684-5562-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics