Adenosine Neuromodulation of Selectively Vulnerable CA1 Neurons

  • Kevin S. Lee
  • Georg W. Kreutzberg
Part of the Advances in Behavioral Biology book series (ABBI, volume 35)


Adenosine is one of the most potent inhibitory modulators of neuronal activity in the hippocampus. This purine nucleoside acts as an endogenous anticonvulsant and its effects are mediated by specific, high-affinity, A1-type receptors that are concentrated in the selectively vulnerable CA1 area. The regional density of adenosine A1 receptors has been shown to be a critical factor controlling the strength of adenosine inhibition and the number of these receptors is reduced rapidly in CA1 following transient ischemia. The hypothesis is discussed that a postischemic attenuation of adenosine neuromodulation contributes to the destabilization of sensitive CA1 neurons.


Adenosine Receptor Purine Nucleoside Transient Ischemia Neuronal Discharge Adenosine Receptor Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Kirino, Delayed neuronal death in the gerbil hippocampus following ischemia, Brain Res., 239: 57 (1982).CrossRefGoogle Scholar
  2. 2.
    W. Pulsinelli, J. Brierley and F. Plum, Temporal profile of neuronal damage in a model of transient forebrain ischemia, Ann. Neurol, 11: 491 (1982).CrossRefGoogle Scholar
  3. 3.
    R. Suzuki, T. Yamaguchi, C. Li, and I. Klatzo, The effects of 5 minute ischemia in Mongolian gerbils: II. Changes of spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus, Acta Neuropath. 60: 217 (1983).CrossRefGoogle Scholar
  4. 4.
    W. Pulsinelli, Deafferentation of the hippocampus protects CA1 pyramidal. neurons against ischemic injury, Stroke 16: 144 (1985).Google Scholar
  5. 5.
    R. Simon, J. Swan, T. Griffiths and B. Meldrum, Blockade of N-methyl-Daspartate receptors may protect against ischemic damage in the brain, Science 226: 850 (1984).CrossRefGoogle Scholar
  6. 6.
    J. Hallmayer, K. Hossmann and G. Mies, Low dose of barbiturates for prevention of hippocampal lesions after brief ischemic episodes, Acta Neuropath. (Berlin) 68: 27 (1985).CrossRefGoogle Scholar
  7. 7.
    K. Lee, G. Sancesario, W. Tetzlaff, and G. Kreutzberg, Post-anoxic treatment with anticonvulsants: electrophysiological and anatomical studies of CA1 pyramidal cells, Neuroscience Abs. vol. 12: 869 (1986).Google Scholar
  8. 8.
    B. Meldrum, T. Griffiths and M. Evans, Hypoxia and neuronal hyper-excitability- A clue to mechanisms of brain protection, in: “Protection of Tissues against Hypoxia” Elsevier Biomed. Press, Amsterdam (1982).Google Scholar
  9. 9.
    B. Siesjo and T. Wieloch, Cerebral metabolism in ischaemia: neurochemical basis for therapy, Br. J. Anaesth. 57: 47 (1985).CrossRefGoogle Scholar
  10. 10.
    T. Dunwiddie, Endogenously released adenosine regulates excitability in the in vitro hippocampus, Epilepsia 21: 541 (1980).CrossRefGoogle Scholar
  11. 11.
    R. Corradetti, G. Lo Conte, F. Moroni, M. Passani and G. Pepeu, Adenosine decreases aspartate and glutamate release from rat hippocampal slices, Eur. J. Pharmacol. 104: 19 (1984).CrossRefGoogle Scholar
  12. 12.
    D. Madison, A. Fox and R. Tsien, Adenosine reduces an inactivating component of calcium current in hippocampal CA3 neurons, Biophys. J. 51: 30a (1987).Google Scholar
  13. 13.
    T. Dunwiddie, Interactions between the effects of adenosine and calcium on synaptic responses in rat hippocampus in vitro, J. Physiol. 350: 545 (1984).Google Scholar
  14. 14.
    T. Dunwiddie and W. Proctor, Mechanisms underlying physiological responses to adenosine in the central nervous system, in: “Topics and Perspectives in Adenosine Research,” E. Gerlach and G. Becker eds. Springer-Verlag, Berlin (1987).Google Scholar
  15. 15.
    M. Reddington, K. Lee and P. Schubert, An Al-adenosine receptor, characterized by 3H-cyclohexyladenosine binding, mediates the depression of evoked potentials in a rat hippocampal slice preparation, Neurosci. Let. 28: 275 (1982).Google Scholar
  16. 16.
    G. Siggins and P. Schubert, Adenosine depression of hippocampal neurons in vitro: an intracellular study of dose-dependent actions on synaptic and membrane potentials, Neurosci. Let., 23: 55 (1981).CrossRefGoogle Scholar
  17. 17.
    M. Segal, Intracellular analysis of a postsynaptic action of adenosine in the rat hippocampus, Eur. J. Pharm. 79: 193 (1982).CrossRefGoogle Scholar
  18. 18.
    H. Haas and R. Greene, Adenosine enhances afterhyperpolarization and accommodation in hippocampal pyramidal cells, Pflug Arch 402: 244 (1984)CrossRefGoogle Scholar
  19. 19.
    W. Proctor and T. Dunwiddie, Adenosine inhibits calcium spikes in hippocampal pyramidal neurons in vitro, Neurosci. Let. 35: 197 (1983).CrossRefGoogle Scholar
  20. 20.
    L. Trussel and M. Jackson, Dependence of an adenosine-activated potassium current on a GTP-binding protein in mammalian central neurons, J. Neurosci. 7: 3306 (1987).Google Scholar
  21. 21.
    K. Lee, P. Schubert and U. Heinemann, The anticonvulsive action of adenosine: a postsynaptic, dendritic action by a possible endogenous anticonvulsant, Brain Res. 321: 160 (1984).CrossRefGoogle Scholar
  22. 22.
    J. Halliwell and C. Scholfield, Somatically recorded Ca-currents in guinea pig hippocampal and olfactory cortex neurones are resistant to adenosine action, Neurosci. Let. 50: 13 (1984).CrossRefGoogle Scholar
  23. 23.
    D. Van Calker, M. Muller, and B. Hamprecht, Adenosine regulates via two different types of receptors the accumulation of cyclic AMP in cultured brain cells. J. Neurochem. 33: 999 (1981).CrossRefGoogle Scholar
  24. 24.
    K. Lee, M. Reddington, P. Schubert and G. Kreutzberg, Regulation of the strength of adenosine modulation in the hippocampus by a differential distribution of the density of Al receptors, Brain Res. 260: 156 (1983).CrossRefGoogle Scholar
  25. 25.
    J. Bernstein, R. Fisher, R. Zaczek and J. Coyle, Dipeptides of glutamate and aspartate may be endogenous neuroexcitants in the rat hippocampal slice, J. Neurosci. 5: 1429 (1985).Google Scholar
  26. 26.
    H. Hagberg, A. Lehmann, M. Sandberg, B. Nystrom, I. Jacobson and A. Hamberger, Ischemia-induced shift of inhibitory and excitatory amino acids from intra-to extracellular compartments, J. Cereb. Blood Flow and Metab. 5: 413 (1985).CrossRefGoogle Scholar
  27. 27.
    E. Westerberg, D. Monaghan, C. Cotman and T. Wieloch, Excitatory amino acid receptors and ischemic brain damage in the rat, Neurosci. Let. 73: 119 (1987).CrossRefGoogle Scholar
  28. 28.
    K. Lee, W. Tetzlaff and G. Kreutzberg, Rapid down regulation of hippocampal adenosine receptors following brief anoxia, Brain Res. 380: 155 (1986).CrossRefGoogle Scholar
  29. 29.
    K. Rudolphi, M. Keil and H. Hinze, Effect of theophylline on ischemically induced hippocampal damage in Mongolian gerbils: A behavioral and histopathological study, J Cereb Blood Flow and Metab 7: 74 (1987)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Kevin S. Lee
    • 1
    • 2
  • Georg W. Kreutzberg
    • 1
    • 2
  1. 1.Dept. of AnatomyThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.Dept. of NeuromorphologyMax Planck InstituteMunichGermany

Personalised recommendations