Skip to main content

Adenosine Neuromodulation of Selectively Vulnerable CA1 Neurons

  • Chapter
  • 124 Accesses

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 35))

Summary

Adenosine is one of the most potent inhibitory modulators of neuronal activity in the hippocampus. This purine nucleoside acts as an endogenous anticonvulsant and its effects are mediated by specific, high-affinity, A1-type receptors that are concentrated in the selectively vulnerable CA1 area. The regional density of adenosine A1 receptors has been shown to be a critical factor controlling the strength of adenosine inhibition and the number of these receptors is reduced rapidly in CA1 following transient ischemia. The hypothesis is discussed that a postischemic attenuation of adenosine neuromodulation contributes to the destabilization of sensitive CA1 neurons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Kirino, Delayed neuronal death in the gerbil hippocampus following ischemia, Brain Res., 239: 57 (1982).

    Article  Google Scholar 

  2. W. Pulsinelli, J. Brierley and F. Plum, Temporal profile of neuronal damage in a model of transient forebrain ischemia, Ann. Neurol, 11: 491 (1982).

    Article  Google Scholar 

  3. R. Suzuki, T. Yamaguchi, C. Li, and I. Klatzo, The effects of 5 minute ischemia in Mongolian gerbils: II. Changes of spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus, Acta Neuropath. 60: 217 (1983).

    Article  Google Scholar 

  4. W. Pulsinelli, Deafferentation of the hippocampus protects CA1 pyramidal. neurons against ischemic injury, Stroke 16: 144 (1985).

    Google Scholar 

  5. R. Simon, J. Swan, T. Griffiths and B. Meldrum, Blockade of N-methyl-Daspartate receptors may protect against ischemic damage in the brain, Science 226: 850 (1984).

    Article  Google Scholar 

  6. J. Hallmayer, K. Hossmann and G. Mies, Low dose of barbiturates for prevention of hippocampal lesions after brief ischemic episodes, Acta Neuropath. (Berlin) 68: 27 (1985).

    Article  Google Scholar 

  7. K. Lee, G. Sancesario, W. Tetzlaff, and G. Kreutzberg, Post-anoxic treatment with anticonvulsants: electrophysiological and anatomical studies of CA1 pyramidal cells, Neuroscience Abs. vol. 12: 869 (1986).

    Google Scholar 

  8. B. Meldrum, T. Griffiths and M. Evans, Hypoxia and neuronal hyper-excitability- A clue to mechanisms of brain protection, in: “Protection of Tissues against Hypoxia” Elsevier Biomed. Press, Amsterdam (1982).

    Google Scholar 

  9. B. Siesjo and T. Wieloch, Cerebral metabolism in ischaemia: neurochemical basis for therapy, Br. J. Anaesth. 57: 47 (1985).

    Article  Google Scholar 

  10. T. Dunwiddie, Endogenously released adenosine regulates excitability in the in vitro hippocampus, Epilepsia 21: 541 (1980).

    Article  Google Scholar 

  11. R. Corradetti, G. Lo Conte, F. Moroni, M. Passani and G. Pepeu, Adenosine decreases aspartate and glutamate release from rat hippocampal slices, Eur. J. Pharmacol. 104: 19 (1984).

    Article  Google Scholar 

  12. D. Madison, A. Fox and R. Tsien, Adenosine reduces an inactivating component of calcium current in hippocampal CA3 neurons, Biophys. J. 51: 30a (1987).

    Google Scholar 

  13. T. Dunwiddie, Interactions between the effects of adenosine and calcium on synaptic responses in rat hippocampus in vitro, J. Physiol. 350: 545 (1984).

    Google Scholar 

  14. T. Dunwiddie and W. Proctor, Mechanisms underlying physiological responses to adenosine in the central nervous system, in: “Topics and Perspectives in Adenosine Research,” E. Gerlach and G. Becker eds. Springer-Verlag, Berlin (1987).

    Google Scholar 

  15. M. Reddington, K. Lee and P. Schubert, An Al-adenosine receptor, characterized by 3H-cyclohexyladenosine binding, mediates the depression of evoked potentials in a rat hippocampal slice preparation, Neurosci. Let. 28: 275 (1982).

    Google Scholar 

  16. G. Siggins and P. Schubert, Adenosine depression of hippocampal neurons in vitro: an intracellular study of dose-dependent actions on synaptic and membrane potentials, Neurosci. Let., 23: 55 (1981).

    Article  Google Scholar 

  17. M. Segal, Intracellular analysis of a postsynaptic action of adenosine in the rat hippocampus, Eur. J. Pharm. 79: 193 (1982).

    Article  Google Scholar 

  18. H. Haas and R. Greene, Adenosine enhances afterhyperpolarization and accommodation in hippocampal pyramidal cells, Pflug Arch 402: 244 (1984)

    Article  Google Scholar 

  19. W. Proctor and T. Dunwiddie, Adenosine inhibits calcium spikes in hippocampal pyramidal neurons in vitro, Neurosci. Let. 35: 197 (1983).

    Article  Google Scholar 

  20. L. Trussel and M. Jackson, Dependence of an adenosine-activated potassium current on a GTP-binding protein in mammalian central neurons, J. Neurosci. 7: 3306 (1987).

    Google Scholar 

  21. K. Lee, P. Schubert and U. Heinemann, The anticonvulsive action of adenosine: a postsynaptic, dendritic action by a possible endogenous anticonvulsant, Brain Res. 321: 160 (1984).

    Article  Google Scholar 

  22. J. Halliwell and C. Scholfield, Somatically recorded Ca-currents in guinea pig hippocampal and olfactory cortex neurones are resistant to adenosine action, Neurosci. Let. 50: 13 (1984).

    Article  Google Scholar 

  23. D. Van Calker, M. Muller, and B. Hamprecht, Adenosine regulates via two different types of receptors the accumulation of cyclic AMP in cultured brain cells. J. Neurochem. 33: 999 (1981).

    Article  Google Scholar 

  24. K. Lee, M. Reddington, P. Schubert and G. Kreutzberg, Regulation of the strength of adenosine modulation in the hippocampus by a differential distribution of the density of Al receptors, Brain Res. 260: 156 (1983).

    Article  Google Scholar 

  25. J. Bernstein, R. Fisher, R. Zaczek and J. Coyle, Dipeptides of glutamate and aspartate may be endogenous neuroexcitants in the rat hippocampal slice, J. Neurosci. 5: 1429 (1985).

    Google Scholar 

  26. H. Hagberg, A. Lehmann, M. Sandberg, B. Nystrom, I. Jacobson and A. Hamberger, Ischemia-induced shift of inhibitory and excitatory amino acids from intra-to extracellular compartments, J. Cereb. Blood Flow and Metab. 5: 413 (1985).

    Article  Google Scholar 

  27. E. Westerberg, D. Monaghan, C. Cotman and T. Wieloch, Excitatory amino acid receptors and ischemic brain damage in the rat, Neurosci. Let. 73: 119 (1987).

    Article  Google Scholar 

  28. K. Lee, W. Tetzlaff and G. Kreutzberg, Rapid down regulation of hippocampal adenosine receptors following brief anoxia, Brain Res. 380: 155 (1986).

    Article  Google Scholar 

  29. K. Rudolphi, M. Keil and H. Hinze, Effect of theophylline on ischemically induced hippocampal damage in Mongolian gerbils: A behavioral and histopathological study, J Cereb Blood Flow and Metab 7: 74 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Lee, K.S., Kreutzberg, G.W. (1988). Adenosine Neuromodulation of Selectively Vulnerable CA1 Neurons. In: Somjen, G. (eds) Mechanisms of Cerebral Hypoxia and Stroke. Advances in Behavioral Biology, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5562-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5562-5_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5564-9

  • Online ISBN: 978-1-4684-5562-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics