Advertisement

Dopamine and the Susceptibility of Striatal Neurons to Ischemia

  • M. Y.-T. Globus
  • M. D. Ginsberg
  • R. Busto
  • W. D. Dietrich
  • E. Martinez
  • I. Valdez
  • P. Scheinberg
Part of the Advances in Behavioral Biology book series (ABBI, volume 35)

Abstract

Neuropathologists have long noted that certain brain regions and specific neuronal types are especially vulnerable to an ischemic insult (2). With the advent of small animal models of ischemia, it has been possible to perform studies of selective vulnerability under controlled conditions. These studies have shown that transient ischemia in rats leads to selective neuronal damage in discrete brain regions such as the CA1 pyramidal cells in the hippocampus and the small-to-medium sized neurons in the striatum (7,24). It has been suggested that excessive release of excitatory neurotransmitters and increased synaptic activity might play a major role in the mediation of postischemic neuronal cell death in selectively vulnerable brain regions (32). However, most of the previous work has focused on the release of glutamate (Glu) and the vulnerability of the hippocampus to ischemia (25,26,27). The striatum, a region highly vulnerable to ischemia, is richly innervated by the nigrostriatal dopaminergic system. This raises the possibility that dopamine (DA) might be involved in ischemic striatal injury.

Keywords

Striatal Neuron Ischemic Cell Transient Forebrain Ischemia Local Cerebral Blood Flow Dorsolateral Striatum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Blomqvist, O. Lindvall, and T. Wieloch, Delayed postischemic hypoperfusion: Evidence against involvement of the noradrenergic locus ceruleus system, J Cereb Blood Flow Metab 4: 425–429 (1984).CrossRefGoogle Scholar
  2. 2.
    J. Brierley, Cerebral Hypoxia, in: “Greenfield’s Neuropathology,” W. Blackwood and A. Corsellis, eds., Edward Arnold, London, 43–85 (1976).Google Scholar
  3. 3.
    R. Busto, W.D. Dietrich, M.Y.-.T. Globus, I. Valdes, P. Scheinberg, and M.D. Ginsberg, Small differences in intra-ischemic brain tem- perature critically determine the extent of ischemic neuronal injury, J Cereb Blood Flow Metab (in press ): (1987).Google Scholar
  4. 4.
    G.A. Dienel, Regional accumulation of calcium in postischemic rat brain, J Neurochem 43: 913–925 (1984).CrossRefGoogle Scholar
  5. 5.
    A. Dray, The physiology and pharmacology of mammalian basal ganglia, Proq Neurobiol 14: 221–335 (1980).CrossRefGoogle Scholar
  6. 6.
    J. Folbergrova, V. MacMillan, and B.K. Siesjö, The effect of hypercapnic acidosis upon some glycolytic and Krebs cycle-associated intermediates in the rat brain, J Neurochem 19: 2507–2517 (1972).CrossRefGoogle Scholar
  7. 7.
    M.D. Ginsberg, D.I. Graham, and R. Busto, Regional glucose utilization and blood flow following graded forebrain ischemia in the rat: correlation with neuropathology, Ann Neurol 18: 470–481 (1985).CrossRefGoogle Scholar
  8. 8.
    M.D. Ginsberg, D.W. Smith, M.S. Wachtel, M. Gonzalez-Carvajal, and R. Busto, Simultaneous determination of local cerebral glucose utilization and blood flow by carbon-14 double-label autoradiography: Method of procedure and validation studies in the rat, J Cereb Blood Flow Metab 6: 273–285 (1986).CrossRefGoogle Scholar
  9. 9.
    M.Y.-.T. Globus, R. Busto, S.I. Harik, W.D. Dietrich, and M.D. Ginsberg, Role of dopsamine in ischemic striatal injury: Meta- bolic evidence, Neurol (in press ): (1987).Google Scholar
  10. 10.
    M.Y.-.T. Globus, M.D. Ginsberg, W.D. Dietrich, R. Busto, and P. Scheinberg, Substantia nigra lesion protects against ischemic damage in the striatum, Neurosci Lett (in apress): (1987).Google Scholar
  11. 11.
    S.I. Harik, J.C. LaManna, S. Snyder, J.R. Wetherbee, and M. Rosenthal, Abnormalities of cerebral oxidative metabolism in animal models of Parkinson disease, Neurology (NY) 32: 382–389 (1982).CrossRefGoogle Scholar
  12. 12.
    F. Hefti, E. Melamed, and R.J. Wurtman, Partial lesions of the dopaminergic nigrostriatal system in rat brain: biochemical characterization, Brain Res 195: 123–137 (1980).CrossRefGoogle Scholar
  13. 13.
    K. Hirata, C.Y. Yim, and G.J. Mogenson, Excitatory input from sensory motor cortex to neostriatum and its modification by conditioning stimulation of the substantia nigra, Brain Res 321: 1–8 (1984).CrossRefGoogle Scholar
  14. 14.
    T. Kato, S.J. Berger, J.A. Carter, and O.H. Lowry, Anal Biochem 55: 86–97 (1973).CrossRefGoogle Scholar
  15. 15.
    I.C. Kilpatrick, M.W. Jpnes, and O.T. Phillipson, A semiautomated analysis method for catecholamines, indoleamines, and some prominent metabolites in microdissected regions of the nervous system: An isocratic HPLC technique employing coulometric detection and minimal sample preparation, J Neurochem 46: 1865–1876 (1986).CrossRefGoogle Scholar
  16. 16.
    S.T. Kitai, M. Sugimori, and J.D. Kocsis, Excitatory nature of dopamine in the nigro-caudate pathway, Exp Brain Res 24: 351–363 (1976).Google Scholar
  17. 17.
    S.T. Kitai, A. Wagner, W. Precht, and T. Ohno, Nigro-caudate and caudato-nigral relationship: an electrophysiological study, Brain Res 85: 44–48 (1975).CrossRefGoogle Scholar
  18. 18.
    A.G. Knapp and J.E. Dowling, Dopamine enchances excitatory amino acid-gated conductances in cultured retinal horizontal cells, Nature 325: 437–439 (1987).CrossRefGoogle Scholar
  19. 19.
    M.H. Lavyne, W.A. Koltun, J.A. Clement, D.L. Rosene, K.S. Pickren, N.T. Zervas, and R.J. Wurtman, Decrease in neostriatal blood flow after D-amphetamine administration or electrical stimulation of the substantia nigra, Brain Res 135: 76–86 (1977).CrossRefGoogle Scholar
  20. 20.
    O. Lindvall, R.N. Auer, and B.K. Siesjo, Selective lesions of mesostriatal dopamine neurons ameliorate hygpoglycemic damage in the caudate-putamen, Exp Brain Res 63: 382–386 (1986).CrossRefGoogle Scholar
  21. 21.
    O. Lindvall, M. Ingvar, and U. Stenevi, Effects of metamphetamine on blood flow in the caudate-putamen after lesions of the nigrostriatal dopaminergic bundle in the rat, Brain Res 211: 211–216 (1981).CrossRefGoogle Scholar
  22. 22.
    E. Melamed, M.A. Moskowitz, and R.J. Wurtman, Involvement of monoamines in the pathogenesis of cerebral ischemia, in: “Cerebral Circulation and Neurotransmitters,” A. Bes and G. Geraud, eds., Excerpta Medica, Amsterdam, 173–182 (1980).Google Scholar
  23. 23.
    W.A. Pulsinelli and J.B. Brierley, A new model of bilateral hemispheric ischemia in the unanesthetized rat, Stroke 10: 267–272 (1979).CrossRefGoogle Scholar
  24. 24.
    W.A. Pulsinelli, J.B. Brierley, and F. Plum, Temporal profile of neuronal damage in a model of transient forebrain ischemia, Ann Neurol 11: 491–498 (1982).CrossRefGoogle Scholar
  25. 25.
    S.M. Rothman, Synaptic activity mediates death of hypoxic neurons, Science 220: 536–537 (1983).CrossRefGoogle Scholar
  26. 26.
    S.M. Rothman, Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death, J Neurosci 4: 1884–1891 (1984).Google Scholar
  27. 27.
    S.M. Rothman and J.W. Olney, Glutamate and the pathophysiology of hypoxic-ischemic brain damage, Ann Neurol 19: 105–111 (1986).CrossRefGoogle Scholar
  28. 28.
    O. Sakurada, C. Kennedy, J. Jehle, J.D. Brown, G.L. Carbin, and L. SoNloff, Measurement of local cerebral blood flow with iodo(C)antipyrine, Am J Physiol 234: 59–66 (1978).Google Scholar
  29. 29.
    L. Sokoloff, M. Reivich, C. Kennedy, M.H. Des Rosiers, C.S. Patlak, K. Pettigrew, O. Sakurada, and M. Shinohara, The (C)deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat, J Neurochem 28: 897–916 (1977).CrossRefGoogle Scholar
  30. 30.
    U. Ungerstedt, Measurement of neurotransmitter release by intracranial dialysis, in: “Measurement of Neurotransmitter Release In Vivo,” C.A. Marsden, ed., John Wiley and Sons, Ltd, 81–105 (1984).Google Scholar
  31. 31.
    J. Weinberger, J. Nieves-Rosa, and G. Cohen, Nerve terminal damage in cerebral ischemia: Protective effect of alpha-methyl-para-tyrosine, Stroke 16: 864–870 (1985).CrossRefGoogle Scholar
  32. 32.
    T. Wieloch, Neurochemical correlates to selective neuronal vulnerability, Prog Brain Res 63: 69–85 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • M. Y.-T. Globus
    • 1
  • M. D. Ginsberg
    • 1
  • R. Busto
    • 1
  • W. D. Dietrich
    • 1
  • E. Martinez
    • 1
  • I. Valdez
    • 1
  • P. Scheinberg
    • 1
  1. 1.Cerebral Vascular Disease Research Center Department of NeurologyUniversity of Miami, School of MedicineMiamiUSA

Personalised recommendations