Advertisement

Dynamics of Volatile Buffers in Brain Cells during Spreading Depression

  • Richard P. Kraig
  • Mitchell Chesler
Part of the Advances in Behavioral Biology book series (ABBI, volume 35)

Summary

Acid-base homeostasis is a well conserved physiologic phenomenon which enables tissues to maintain an environment conducive to vital cell processes. Accordingly, deterioration of pH homeostasis during disease states can be expected to reflect fundamental reactions of cells and tissues to pathologic stimuli. For example, volatile H+-buffers (i.e. HCO3 and NH3), while involved in pH regulation, are also important variables in volume (HCO3 ) regulation and neurotransmitter and energy (NH3) metabolism. Thus during pH perturbations changes in these volatile buffers may provide insights to the dynamic behavior of volume regulatory and metabolic activities of brain cells.

Measurements made during spreading depression (SD) in rat of intracellular or interstitial pH were compared to separate measurements of tissue carbon dioxide tension or [NH3] to allow calculations of [HCO3 ] or [NH4 +], respectively, in these compartments. [HCO3 ] or [NH4 +] changes were marked in glia. In contrast, only modest shifts of these ions were found in neurons. These results suggest that glia and neurons may have dissimilar volume regulatory and metabolic responses to SD.

Keywords

Interstitial Space Spreading Depression Ischemic Brain Injury Neurochemical Pathology Volatile Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aisen, P. 1979, Some physicochemical aspects of iron metabolism, in: “Iron Metabolism”, Ciba Foundation Symposium No. 51, Elsevier, Amsterdam.Google Scholar
  2. Aisen, P., 1980, The Transferrins in: “Iron in Biochemistry and Medicine, II”,A. Jacobs and M. Warwood, eds., Academic, New York.Google Scholar
  3. Ammann, D., Lanter, F., Steiner, R.A., Schulthess, P., Shijo, Y. and Simon, W. 1981, Neutral carrier based hydrogen ion selective microelectrodes for extra-and intracellular studies, Analyt. Chem., 53: 2267.Google Scholar
  4. Ballanyi, K., Grafe, P., and Ten Bruggencate, G., 1987, Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices, J. Physiol., 382: 159.Google Scholar
  5. Brierley, J.B. and Graham, P.I., 1984, Hypoxia and vascular disorders of the central nervous system, in: “Greenfield’s Neuropathology,” J.H. Adams, J.A.N. Corsellis, and L.W. Duchen, eds., Wiley, New York.Google Scholar
  6. Busa, W.B. and Nuccitelli R., 1984, Metabolic regulation via vintracellular pH, Am. J. Physiol., 246: R409.Google Scholar
  7. Chesler, M. and Kraig, R.P., 1987a, Intracellular pH of astrocytes rapidly increases with cortical stimulation, Am. J. Physiol., 252: R666.Google Scholar
  8. Chesler, M. and Kraig, R.P., 1987b, Intracellular pH transients of mammalian astrocytes, (submitted for publication).Google Scholar
  9. Cooper, A.J.L. and Plum, F. 1987, Biochemistry and physiology of brain ammonia, Physiol. Rev., 67: 440.Google Scholar
  10. Ginsberg, M.D., Welsh, F.A., and Budd, W.W., 1980, Deleterious effect of glucose pretreatment on recovery from diffuse cerebral ischemia in the rat. 1. Local cerebral blood flow and glucose utilization, Stroke, 11: 347.Google Scholar
  11. Hansen, A.J., 1985, Effect of anoxia on ion distribution in the brain, Physiol. Rev. 65: 101.Google Scholar
  12. Kalimo, H., Rehncrona, S., Sodefeldt, B., Olson, Y., and Siesjo, B.K., 1981, Brain lactic acidosis and ischemic cell damage. 2. Histopathology., J. Cereb. Blood Flow and Met., 1: 323.Google Scholar
  13. Kimelberg, H.K. and Ransom, B.R., 1986, Physiological and pathological aspects of astrocytic swelling, in: “Astrocytes”, vol. 3, Cell Biology and Pathology of Astrocytes, S. Fedoroff and A. Vernadakis, eds., Academic, New York.Google Scholar
  14. Kraig, R.P. and Cooper, A.J.L., 1987, Bicarbonate and ammonia changes in brain during spreading depression, Canad. J. Physiol., 65: 1099.Google Scholar
  15. Kraig, R.P. and Nicholson, C., 1978, Extracellplar ionic variations during spreading depression, Neuroscience, 3: 1045.CrossRefGoogle Scholar
  16. Kraig, R.P. and Nicholson, C., 1986, Acidosis of presumed glia during ischemia, Soc. Neurosci., 12: 65.Google Scholar
  17. Kraig, R.P. and Nicholson, C., 1987, Profound acidosis of presumed glia during ischemia, in: “Cerebrovascular Diseases”, 15th Princeton-Williamsburg Conference, M.E. Raichle and W.J. Powers, eds., Raven, New York.Google Scholar
  18. Kraig, R.P., Pulsinelli, W.A., and Plum, F., 1985a, Hydrogen ion buffering during complete brain ischemia, Brain Res., 342: 281.CrossRefGoogle Scholar
  19. Kraig, R.P., Pulsinelli, W.A., and Plum, F., 1985b, Heterogeneous distribution of hydrogen ions and bicarbonate ions during complete brain ischemia, in: “Mechanisms of Ischemic Brain Injury”, Prog. in Brain Res., vol. 63, K.-A. Hossman, D.K. Siesjo, F.A. Welsh, and K. Kogure eds., Elsevier/North-Holland, Amsterdam.Google Scholar
  20. Kraig, R.P., Pulsinelli, W.A., and Plum, F., 1986, Carbonic acid buffer changes during complete brain ischemia, Am. J. Physiol., 250: R348.Google Scholar
  21. Mutch, W.A.C. and Hansen, A.J., 1984, Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation, J. Cereb. Blood Flow & Met., 4: 17.Google Scholar
  22. Myers, R.E. and Yamaguchi, S., 1977, Nervous system effects of cardiac arrest in monkeys, Arch. Neurol., 34: 65.Google Scholar
  23. Phillips, J.M. and Nicholson, C., 1979, Anion permeability in spreading depression investigated with ion-selective microelectrodes, Brain Res. 173: 567.CrossRefGoogle Scholar
  24. Plum, F., 1983, What causes infarction of brain, Neurology, 33: 222.CrossRefGoogle Scholar
  25. Ponten, U. and Siesjo, B.K., 1966, Gradients of CO2 tension in the brain, Acta Physiol. Scand., 67: 129.Google Scholar
  26. Pulsinelli, W.A., Waldman, S., Rawlinson, D. and Plum, F., 1982, Moderate hyperglycemia augments ischemic brain damage: a neuropathologic study in the rat, Neurology, 32: 1239.CrossRefGoogle Scholar
  27. Pulsinelli, W.A., Kraig, R.P., and Plum, F., 1985, Hyperglycemia, cerebral acidosis, and ischemic brain damage, in: “Cerebrovascular Diseases”, 14th Princeton-Williamsburg Conference, F. Plum and W.A. Pulsinelli, eds., Raven, New York.Google Scholar
  28. Rehncrona, S., Rosen, I., and Siesjo, B.K., 1981, Brain lactic acidosis and ischemic cell change. I. Biochemistry and neurophysiology, J. Cereb. Blood Flow and Met., 1: 297.Google Scholar
  29. Roos, A. Boron, W.F., 1981, Intracellular pH, Physiol. Rev., 61: 296.Google Scholar
  30. Sapirstein, V.S., 1983, Carbonic anhydrase, in: “Handbook of Neurochemistry”, 2nd ed., vol. 4, A. Lajtha, ed., Plenum, New York.Google Scholar
  31. Siesjo, B.K., 1985, Acid-base homeostasis in the brain: physiology, chemistry, and neurochemical pathology, in: “Mechanisms of Ischemic Brain Injury”, Prog. in Brain Res., vol. 63, K.-A. Hossman, H.K.Google Scholar
  32. Siesjo, F.A. Welsh, and K. Kogure, eds., Elsevier/North-Holland, Amsterdam.Google Scholar
  33. Siesjo, H.K., 1985, Membrane events leading to glial swelling and brain edema, in: “Brain Edema”, Y.Inaba, I. Klatzo, and M. Spatz, eds., Springer-Verlag, New York.Google Scholar
  34. Tashian, R.E. and Hewett-Emmett, D.H., 1984, Biology and Chemistry of Carbonic Anhydrase, Ann. N.Y. Acad. Sci., 429.Google Scholar
  35. Tilden, J.T., 1983, Glutamine; a possible energy source for the brain, in: “Glutamine, Glutamate, and BABA in the Central Nervous System”, L. Hertz, E. Kvamme, E.G. McGeer, and A. Schousboe, eds., Liss, New York.Google Scholar
  36. Thomas, R.C., 1986, Eccentric double micropipette suitable for both pH. microelectrodes and for iontophoresis, J. Physiol. ( London ), 371: 24P.Google Scholar
  37. Van Harrelveld, A., 1982, Swelling of the Muller fibers in the chicken retina, J. Neurobiol., 13: 519.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Richard P. Kraig
    • 1
  • Mitchell Chesler
    • 1
  1. 1.Cornell University Medical CollegeNew YorkUSA

Personalised recommendations