Long-Term Inhibition of Synaptic Transmission and Macromolecular Synthesis Following Anoxia in the Rat Hippocampal Slice: Interaction between Ca2+ and NMDA Receptors

  • Peter Lipton
  • Kate Raley
  • Doub Lobner
Part of the Advances in Behavioral Biology book series (ABBI, volume 35)


The rat hippocampal slice is becoming a quite widely used system for studying anoxic damage in brain tissue. We have been using it to study the long-term effects of short anoxic exposures on specific functions, in particular synaptic transmission and synthesis of protein and RNA. The first two of these functions are strongly inhibited for many hours after short exposures to anoxia or “ischemia”. RNA synthesis is less readily damaged; it only becomes permanently damaged following 20 minutes of anoxia without glucose.

Much of the chapter explores the mechanism of the long-term damage to synaptic transmission. Data strongly suggest that the early fall in ATP is the primary trigger for damage. There is a significant uptake of calcium into the tissue during anoxia, due to inhibition of Ca2+-extrusion across the plasmalemma and there is quite strong evidence that this increase is a major subsequent event in the damage sequence. Binding of glutamate to NMDA-type receptors is also important for the development of damage and evidence is presented which argues that this binding does not act to increase Ca2+ entry from the extracellular space. It is suggested that it acts by leading to the release of calcium from intracellular stores.

The relationship of the in vitro damage to ischemic damage in situ is discussed and it is concluded that there are important similarities.


NMDA Receptor Cerebral Ischemia Synaptic Transmission Hippocampal Slice Extracellular Calcium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ames, A. & Nesbitt, F.B. (1983) Pathophysiology of ischemic cell death: I. Time of onset of irreversible damage; importance of the different components of the ischemic insult. Stroke, 14: 218–226.Google Scholar
  2. 2.
    Ashton, D., Reid, K., Williams, R. & Wauquier, A. (1986) N-methyl-D-aspartate and hypoxia induced Ca2+-changes in the CA1 region of the hippocampal slice. Brain Res. 385: 185–188.CrossRefGoogle Scholar
  3. 3.
    Balestrino, M. & Somjen, G.G. (1987) Hypoxic depolarization and loss of synaptic function in CA1 and dentate gyrus of hippocampal tissue slices. Soc. Neurosci. Abs. 13: 319.Google Scholar
  4. 4.
    Benveniste, H., Dreier, J., Schousboe, A. & Diemer, N.H. (1984) Elevation of extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by microdialysis. J. Neurochem. 43: 1369–1374.CrossRefGoogle Scholar
  5. 5.
    Berne, R.M., Rubio, R. & Curnish, R.R. (1974) Release of adenosine from ischemic brain. Circ. Res. 35: 262–272.Google Scholar
  6. 6.
    Bodsch, W., Takahashi, K., Barbier, A., Ophoff, B.G. & Hossman, K-A. (1985) Cerebral protein synthesis and ischemia. Prog. Brain Res. 63: 197–210.CrossRefGoogle Scholar
  7. 7.
    Carafoli, E. (1982) Membrane Transport Of Calcium. New York, Academic.Google Scholar
  8. 8.
    Cheung, J.Y., Thompson, I.G., Bonventre, J.V. (1982) Effects of extracellular calcium removal and anoxia on isolated rat myocytes. Am. J. Physiol. 243: C184–190.Google Scholar
  9. 9.
    Clark, G.D. & Rothman, S.M. (1987) Blockade of excitatory amino acid receptors protects anoxic hippocampal slices. Neuroscience 21: 665–671.CrossRefGoogle Scholar
  10. 10.
    Deby, C., Pincemail, J., Hans, P., Braquet, P., Lion, Y., Deby-Dupont, G. & Goutier, R. (1984) Mechanisms of free radical production in the AA cascade and role of anti-lipid peroxidants and free radical scavengers. Cerebral Ischemia, Bes. A., Bract Amsterdam, Elsevie. pp. 249–258.Google Scholar
  11. 11.
    Deshpande, J.K., Siesjo, B.K. & Wieloch, T. (1987) Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia. J. Cereb. 81. Flow Metab. 7: 89–95.CrossRefGoogle Scholar
  12. 12.
    Dienel, G.A., Pulsinelli, W.A. & Duffy, T.E. (1980) Regional protein synthesis in rat brain following acute hemispheric ischemia. J. Neurochem. 35: 1216–1226.CrossRefGoogle Scholar
  13. 13.
    Duffy, T.E., Kohle, S.J. & Vanucci, R.C. (1975) Carbohydrate and energy metabolism in perinatal rat brain: relation to survival in anoxia. J. Neurochem. 24: 271–276.CrossRefGoogle Scholar
  14. 14.
    England, P.J. (1986) Intracellular calcium receptor mechanisms. Brit. Med. Bull. 42: 375–383.Google Scholar
  15. 15.
    Farber, J.L., Chien, K.R. & Mittnacht, S. Jr. (1981) The pathogenesis of irreversible cell injury in ischemia. Am. J. Pathol. 102: 271–281.Google Scholar
  16. 16.
    Fariss, M.W., Pascoe, G.A. & Reed, D.J. (1985) Vitamin E reversal of the effect of extracellular calcium on chemically induced toxicity in hepatocytes. Science, 227: 751–754.Google Scholar
  17. 17.
    Fitzpatrick, D.B. & Karmazyn, M. (1984) Comparative effects of calcium channel blocking agents and varying extracellular calcium concentration on hypoxia/reoxygenation and ischemia/reperfusioninduced cardiac injury. J. Pharm. Exp. Ther. 228: 761–768.Google Scholar
  18. 18.
    Hisanaga, K., Onodera, H. & Kogure, K. (1986) Changes in levels of purine and pyrimidine nucleotides during acute hypoxia and recovery of neonatal rat brain. J. Neurochem. 47: 1344–1350.CrossRefGoogle Scholar
  19. 19.
    Hossman, K-A. & Ophoff, B.G. (1986) Recovery of monkey brain after prolonged ischemia. I. Electrophysiology and brain electrolytes. J. Cereb. 81. Flow Metab. 6: 15–21.Google Scholar
  20. 20.
    Kabat, H. (1940) The greater resistance of very young animals to arrest of the brain circulation. Am. J. Physiol. 130: 588–598.Google Scholar
  21. 21.
    Kass, I.S. & Lipton, P. (1982) Mechanisms involved in irreversible anoxic damage to the in vitro rat hippocampal slice. J. Physiol. 332: 459–472.Google Scholar
  22. 22.
    Kass, I.S. & Lipton, P. (1983) Differential sensitivity of pyramidal and granule cell neurons to anoxic damage in hippocampi from young rats. Soc. Neurosci. Abs. 9: 473.Google Scholar
  23. 23.
    Kass, I.S. & Lipton, P. (1986) Calcium and long-term transmission damage following anoxia in dentate gyrus and CA1 regions of the rat hippocampal slice. J. Physiol. 378: 313–334.Google Scholar
  24. 24.
    Kirino, T. (1983) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 239: 57–69.CrossRefGoogle Scholar
  25. 25.
    Lemasters, J.J., Digiuseppi, J., Nieminen, A-L. & Herman, B. (1987) Blebbing, free Ca2+ and mitochondrial membrane potential preceeding cell death in hepatocytes. Nature, 325: 77–81.CrossRefGoogle Scholar
  26. 26.
    Lipton, P. (1972) Effects of membrane depolarization on light scattering by cerebral cortical slices. J. Physiol. 231: 365–383.Google Scholar
  27. 27.
    Lipton, P. & Whittingham, T.S. (1982) Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea-pig hippocampus. J. Physiol. ( London ) 325: 51–65.Google Scholar
  28. 28.
    Lipton, P. & Whittingham, T.S. (1984) Energy metabolism and brain slice function. Brain Slices, Dingledine, R. ed. New York, Academic. pp. 113–154.Google Scholar
  29. 29.
    Lobner, D. & Lipton, P. (1987) Glutamate receptors and irreversible anoxic damage in hippocampal slices: mechanisms of interaction. Soc. Neurosci. Abs. 13: 647.Google Scholar
  30. 30.
    Mayer, M.L. & Westbrook, G.L. (1985) The action of N-methyl-Daspartic acid on mouse spinal neurones in culture. J. Physiol. 361: 65–90.Google Scholar
  31. 31.
    Mayer, M.L. & Westbrook, G.L. (1987) The physiology and excitatory amino acids in the vertebrate central nervous system. Prog. Neurobiol. 28: 197–276.CrossRefGoogle Scholar
  32. 32.
    Myers, R.E. (1976) Anoxic brain pathology and blood glucose. Neurology 26: 345–353.CrossRefGoogle Scholar
  33. 33.
    Nemoto, E.M., Bleyaert, A.L., Stezoski, S.W., Moossy, J., Rao, G.R. & Safar, P. (1977) Global brain ischemia: a reproducible monkey model. Stroke 8: 558–564.CrossRefGoogle Scholar
  34. 34.
    Nordstrom, C-H., Rehncronaus, S., Siesjo, B.K. & Westerberg, E. (1977) Adenosine in rat cerebral cortex: its determination, normal values, and correlation to AMP and cyclic AMP during short-lasting ischemia. Acta Physiol. Scand. 101: 63–71.CrossRefGoogle Scholar
  35. 35.
    Petito, C.K. & Pulsinelli, W.A. (1984) Delayed neuronal recovery and neuronal death in rat hippocampus following severe cerebral ischemia: possible relationship to abnormalities in neuronal processes. J. Cereb. 81. Flow Metab. 4: 194–205.CrossRefGoogle Scholar
  36. 36.
    Pulsinelli, W.A. (1985) Selective neuronal vulnerability: morphological and molecular characteristics. Prog. Brain Res. 63: 29–37.CrossRefGoogle Scholar
  37. 37.
    Pulsinelli, W. & Brierly, J. (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10: 267–272.CrossRefGoogle Scholar
  38. 38.
    Raley, K.M. & Lipton, P. (1986) The effects of in vitro “ischemia” on macromolecular synthesis in rat hippocampal slices. Neurosci. Soc. Abstracts. 12: 693.Google Scholar
  39. 39.
    Ridge, J.W. (1972) Hypoxia and the energy charge of the cerebral adenylate pool. Biochem. J. 127: 351–355.Google Scholar
  40. 40.
    Rothman, S.M., Thurston, J.H., Hauhart, R.E., Clark, G.D. & Solomon, J.S. (1987) Ketamine protects hippocampal neurons from anoxia in vitro. Neuroscience 21: 673–678.CrossRefGoogle Scholar
  41. 41.
    Schanne, F.A.X., Kane, A.B., Young, E.A. & Farber, J.L. (1979) Calcium dependence of toxic cell death: a final common pathway. Science 206: 700–702.CrossRefGoogle Scholar
  42. 42.
    Scholz, W. (1953) Selective neuronal necrosis and its topistic patterns of hypoxemia and oligemia. J. Neuropath. Exp. Neurol. 12: 249–261.CrossRefGoogle Scholar
  43. 43.
    Schwertsschlag, U., Schrier, R.W. & Wilson, P. (1986) Beneficial effects of calcium channel blockers and calmodulin binding drugs on in vitro renal cell anoxia. J. Pharm. Exp. Ther. 238: 119–124.Google Scholar
  44. 44.
    Seraydarian, M.W., Artaza, L. & Abbot, B.C. (1974) Creatine and the control of energy metabolism in cardiac and skeletal muscle cells in culture. J. Mol. Cell. Cardiol. 6: 669–678.CrossRefGoogle Scholar
  45. 45.
    Siemkowicz, E. & Hansen, A.J. (1981) Brain extracellular ion composition and EEG activity following 10 minutes ischemia in normo and hyperglycemic rats. Stroke 12: 236–240.CrossRefGoogle Scholar
  46. 46.
    Smith, M-L., Bendek, G., Dahlgren, N., Rosen, I., Wieloch, T. & Siesjo, B.K. (1984) Models for studying long-term recovery following forebrain ischemia in the rat. 2. A 2-vessel occlusion model. Acta Neurol. Scand. 69: 385–401.CrossRefGoogle Scholar
  47. 47.
    Steen, P.A., Gisvold, S.E., Milde, J.H., Newberg, L.A., Scheithauer, B.W. & Michenfelder, J.D. (1985) Nimodipine improves outcome when given after complete cerebral ischemia in primates. Anesthesiology 62: 406–414.CrossRefGoogle Scholar
  48. 48.
    Suzuki, R., Yanaguchi, T., Li, C-L. & Klatzo, I. (1983) The effects of 5-minute ischemia in mongolian gerbils: II. Changes of spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus. Acta Neuropathol. ( Berl ) 60: 217–222.CrossRefGoogle Scholar
  49. 49.
    Taylor, M.D., Mellert, T.K., Parmentier, J.L. & Eddy, L.J. (1985) Pharmacological protection of reoxygenation damage to in vitro brain slice tissue. Brain Res. 347: 268–273.CrossRefGoogle Scholar
  50. 50.
    von Lubitz, D.K.J.E. & Diemer, N.H. (1983) Cerebral ischemia in the rat: ultrastructural and morphometric analysis of synapses in stratum radiatum of the hippocampal CA1 region. Acta Neuropathol. ( Berl ) 61: 52–60.CrossRefGoogle Scholar
  51. 51.
    White, B.C., Krause, G.S., Aust, S.D. & Eyster, G.E. (1985) Postischemic tissue injury by iron-mediated free radical lipid peroxidation. Ann. Emerg. Med. 14: 804–809.CrossRefGoogle Scholar
  52. 52.
    Whittingham, T.S. & Lipton, P. (1981) Cerebral transmission during anoxia is protected by creatine. J. Neurochem. 37: 1618–1621.CrossRefGoogle Scholar
  53. 53.
    Yamamoto, K., Morimotor, K. & Yanagahara, T. (1986) Cerebral ischemia in the gerbil: transmission electron microscopic and immunoelectromicroscopic investigation. Brain Res. 384: 1–10.CrossRefGoogle Scholar
  54. 54.
    Zimmerman, U-J. P. & Schlaepfer, W.W. (1982) Characterization of a brain calcium-activated protease that degrades neurofilament proteins. Biochemistry 21: 3977–3983.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Peter Lipton
    • 1
  • Kate Raley
    • 1
  • Doub Lobner
    • 1
  1. 1.Department of PhysiologyUniversity of WisconsinMadisonUSA

Personalised recommendations