Advertisement

Anoxia Reversibly Inactivates Hippocampal Ca-Currents

  • K. Krnjević
  • Jean Leblond
Part of the Advances in Behavioral Biology book series (ABBI, volume 35)

Summary

Evidence from intracellular recording and voltage-clamping in hippocampal slices indicates that brief anoxia (2–4 min) strongly depresses excitability and synaptic potentials by raising K conductance and inactivating Ca-currents. Both effects could be explained by a rise in intracellular free Ca2+.

Keywords

Hippocampal Slice Intracellular Recording Synaptic Potential Hyperpolarizing Effect Increase Potassium Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, P.F., 1972, Transport and metabolism of calcium ions in nerve, Prog. Biophys. Mol. Biol., 25: 177.CrossRefGoogle Scholar
  2. Brown, D.A. and Griffith, W.H., 1983, Persistent slow inward calcium current in voltage-clamped hippocampal neurones of the guinea-pig, J. Physiol., 337: 303.Google Scholar
  3. Byerly, L. and Yazejian, B., 1986, Intracellular factors for the maintenance of calcium currents in perfused neurones from the snail, Lymnae stagnalis, J. Physiol., 370: 631.Google Scholar
  4. Cook, D.L. and Hales, C.N., 1984, Intracellular ATP directly blocks K+ channels in pancreatic ß-cells, Nature 311: 271.CrossRefGoogle Scholar
  5. Eckert, R. and Chad, J.E., 1984, Inactivation of Ca channels, Prog. Biophys. Mol. Biol., 44: 215.CrossRefGoogle Scholar
  6. Fazekas, J.F., Alexander, F.A.D. and Himwich, H.E., 1941, Tolerance of the newborn to anoxia, Amer. J. Physiol., 134: 281.Google Scholar
  7. Finkel, A.S. and Redman, S.J., 1985, Optimal voltage clamping with single microelectrode, In: “Voltage and Patch Clamping with Microelectrodes”, T.G. Smith, (Jr.), H. Lecar, S.J. Redman and P.W. Gage, Eds., American Physiological Society, Bethesda, Maryland, pp. 95.Google Scholar
  8. Fujiwara, N., Higashi, H., Shimoji, K. and Yoshimura, M., 1987, Effects of hypoxia on rat hippocampal neurones in vitro, J. Physiol., 384: 131.Google Scholar
  9. Glotzner, F., 1967, Intracellulare Potentiale, EEG und corticale Gleichspannung an der sensomotorischen Rinde der Katze bei akuter Hypoxia, Archiv. Psychiatr. Nervenkr., 210: 274.CrossRefGoogle Scholar
  10. Halliwell, J.V., 1983, Caesium-loading reveals two distinct Ca-currents in voltage-clamped guinea-pig hippocampal neurones in vitro, J. Physiol., 341: 10 P.Google Scholar
  11. Hansen, A.J., 1985, Effect of anoxia on ion distribution in the brain, Physiol. Rev., 65: 101.Google Scholar
  12. Hansen, A.J., Hounsgaard, J. and Jahnsen, H., 1982, Anaoxia increases potassium conductance in hippocampal nerve cells, Acta. Physiol. Scand., 115: 301.CrossRefGoogle Scholar
  13. Himwich, H.E., 1951, “Brain Metabolism and Cerebral Disorders”, The William and Wilkins Company, Baltimore.Google Scholar
  14. Johnston, D., Hablitz, J.J. and Wilson, W.A., 1980, Voltage clamp discloses slow inward current in hippocampal burst-firing neurones, Nature 286: 391.CrossRefGoogle Scholar
  15. Krnjevie, K., 1975, Coupling of neuronal metabolism and electrical activity, In: “Brain Work: The coupling of function, metabolism and blood flow in the brain,” H.D. Ingvar and N.A. Lassen, Eds., Alfred Benzon Symposium VIII/Copenhagen Munsgaard, pp. 65.Google Scholar
  16. Krnjevié, K., Cherubini, E. And Ben-Ari, Y., 1987, Effects of anoxia on synaptic transmission and calcium currents in immature hippocampus, Soc. Neurosci. Abstr., 13: 1355.Google Scholar
  17. Krnjevié, K. and Leblond, J., 1987a, Mechanism of hyperpolarizing response of hippocampal cells in isolated slices to anoxia, J. Physiol., 382: 79 P.Google Scholar
  18. Krnjevié, K. and Leblond, J., 1987b, Anoxia reversibly suppresses neuronal Ca- currents in rat hippocampal slices, Can. J. Physiol. Pharmacol., 65: 2157.CrossRefGoogle Scholar
  19. Krnjevié, K. and Leblond, J., 1987c, Ca currents of rat hippocampal neurones in isolated slices are depressed by anoxia, J. Physiol., 390, 55 p.Google Scholar
  20. Krnjevie, K. and Leblond, J., 1988 (in press), Are there hippocampal ATP-sensitive K-channels that are activated by anoxia? Communication for Wurzburg Physiological Society.Google Scholar
  21. Leblond, J., 1987, Processus d’hyperpolarisation post-anoxique dans les neurones de l’hippocampe du rat, Can. J. Physiol. Pharmacol., 65:Axx.Google Scholar
  22. Lipton, P. and Whittingham, T.S., 1979, The effect of hypoxia on evoked potentials in the in vitro hippocampus, J. Physiol., 287: 427.Google Scholar
  23. Mechmann, S. and Pott, L., 1986, Identification of Na-Ca exchange current in single cardiac myocytes, Nature, 319, 597.CrossRefGoogle Scholar
  24. Morris, M.E., Krnjevié, K. and Leblond, J., 1987, Changes in extracellular [K+] and [Ca2+] evoked by anoxia in rat hippocampal slices, Soc. Neurosci. Abstr., 13: 1355.Google Scholar
  25. Morris, M.E., Krnjevié, J. and MacDonald, J.F., 1985, Changes in intracellular free Ca ion concentration evoked by electrical activity in cat spinal neurons in situ, Neuroscience, 14: 563.CrossRefGoogle Scholar
  26. Noma, A. and Shibasaki, T., 1985, Membrane current through adenosine-triphosphateregulated potassium channels in guinea-pig ventricular cells, J. Physiol., 363: 464.Google Scholar
  27. Owen, D.G., Segal, M. and Barker, J.L., 1986, Voltage-clamp analysis of a Ca2+and voltage-dependent chloride conductance in cultured mouse spinal neurons, J. Neurophysiol., 55: 1115.Google Scholar
  28. Sugar, O. and Gerard, R.W., 1938, Anoxia and brain potentials, J. Neurophysiol., 1: 558.Google Scholar
  29. Trube, G., Rorsman, P. and Ohno-Shosaku, T., 1986, Opposite effects of tolbutamide and diazoxide on the ATP-dependent K channel in mouse pancreatic beta-cells, Pflugers Arch., 407: 493.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • K. Krnjević
    • 1
  • Jean Leblond
    • 1
  1. 1.Anaesthesia Research DepartmentMcGill UniversityCanada

Personalised recommendations