Advertisement

Cerebral Hypoxia during Repetitive Seizures

  • Norman R. Kreisman
Part of the Advances in Behavioral Biology book series (ABBI, volume 35)

Summary

Cerebral oxygenation was investigated during experimentally-induced status epilepticus to determine whether O2 supply is always sufficient to meet demand. Early in a series of seizures, cerebral oxygenation increased phasically in association with paroxysmal electrocortical activity. During later seizures, cerebral oxygenation decreased phasically, accompanied by attenuation of increases in cerebral blood flow, cerebral blood volume, and arterial blood pressure. The seizure-associated cerebral hypoxia occurred in many experiments without any changes in arterial PO2. Ventilation of the animal with 100% O2 restored the phasic increases in cerebral oxygenation, probably by restoring increases in cerebral blood flow. Systemic complications of status epilepticus (e.g., pulmonary edema) also can profoundly decrease cerebral oxygenation. An important remaining question is whether the cerebral hypoxia accompanying later seizures contributes to the neuronal damage following prolonged status epilepticus.

Keywords

Cerebral Blood Flow Arterial Blood Pressure Pulmonary Edema Status Epilepticus Cerebral Blood Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bazan, N. G., D. L. Birkle, W. Tang and T. S. Reddy, The accumulation of free arachidonic acid, diacylglycerols, prostaglandins, and lipoxygenase reaction products in the brain during experimental epilepsy, In: “Basic Mechanisms of the Epilepsies, Molecular and Cellular Approaches,” Advances in Neurology, Vol. 44, A.V. Delgado-Escueta, D. M. Woodbury, A. A. Ward, Jr. and R. J. Porter, Eds., Raven Press, New York (1986).Google Scholar
  2. 2.
    Blennow, G., J. B. Brierley, B. S. Meldrum and B. K. Siesjö, Epileptic brain damage. The role of systemic factors that modify cerebral energy metabolism, Brain, 101: 687–700 (1978).CrossRefGoogle Scholar
  3. 3.
    Blennow, G., B. Nilsson and B. Siesjö, Influence of reduced oxygen availability on cerebral metabolic changes during bicuculline-induced seizures in rats, J. Cereb. Blood Flow Metab., 5: 439–445 (1985).CrossRefGoogle Scholar
  4. 4.
    Caspers, H. and F. J. Speckmann, Cerebral p02, pCO2 and pH: Changes during convulsive activity and their significance for spontaneous arrest of seizures, Epilepsia, 13: 699–725 (1972).CrossRefGoogle Scholar
  5. 5.
    Heiss, W. D., M. Turnheim, R. Vollmer and P. Rappelsberger, Coupling between neuronal activity and focal blood flow in experimental seizures, Electroencephalogr. Clin. Neurophysiol., 27: 396–403 (1979).Google Scholar
  6. 6.
    Jöbsis, F. F., J. Keizer, J. C. LaManna and M. Rosenthal, Reflectance spectrophotometry of the intact cerebral cortex. I. Dual wavelength technique, J. Appl. Physiol., 43: 858–872 (1977).Google Scholar
  7. 7.
    Kiessling, M., J. A. Hossmann and P. Kleihues, Pulmonary edema during bicuculline induced seizures in rats, Exp. Neurol. 74: 430–438 (1981).CrossRefGoogle Scholar
  8. 8.
    Kreisman, N. R., R. A. Hodin, B. L. Brizzee, M. Rosenthal, T. J. Sick, R. Busto, and M. D. Ginsberg, Seizure-associated pulmonary edema and cerebral oxygenation in the rat, J. Appl. Physiol., 62: 658–667, (1987).Google Scholar
  9. 9.
    Kreisman, N. R., R. A. Hodin, M. Rosenthal, and T. J. Sick, Role of pulmonary edema in phasic changes of cerebral oxygenation during serial seizures, Brain Res., 417–335: 342 (1987).Google Scholar
  10. 10.
    Kreisman, N. R., J. C. LaManna, M. Rosenthal, and T. J. Sick, Oxidative metabolic responses with recurrent seizures in rat cerebral cortex: role of systemic factors, Brain Res., 218: 174–188 (1981).Google Scholar
  11. 11.
    Kreisman, N. R., M. Rosenthal, J. C. LaManna, and T. J. Sick, Cerebral oxygenation during recurrent seizures, In: “Status Epilepticus: Mechanisms of Brain Damage and treatment,” Advances in Neurology, Vol. 34, A. Delgado-Escueta, C. G. Wasterlain, D. M. Treiman, and R. J. Porter, eds., Raven Press, New York (1983).Google Scholar
  12. 12.
    Kreisman, N. R., M. Rosenthal, T. J. Sick, and J. C. LaManna, Oxidative metabolic responses during recurrent seizures are independent of convulsant, anesthetic, or species, Neurology, 33: 861–867 (1983).CrossRefGoogle Scholar
  13. 13.
    Kreisman, N. R., T. J. Sick, and D. F. Bruley, Local oxygen tension and its relationship to unit activity during penicillin interictal discharges in the bullfrog hippocampus, Electroencephalogr. Clin. Neurophysiol., 46: 619–633 (1979).CrossRefGoogle Scholar
  14. 14.
    Kreisman, N. R., T. J. Sick, J. C. LaManna, and M. Rosenthal, Local tissue oxygen tension—cytochrome a,a3 redox relationships in rat cerebral cortex in vivo, Brain Res., 218: 161–174 (1981).CrossRefGoogle Scholar
  15. 15.
    Kreisman, N. R., T. J. Sick, and M. Rosenthal, Importance of vascular responses in determining cortical oxygenation during recurrent paroxysmal events of varying duration and frequency of repetition, J. Cereb. Blood Flow Metabol., 3: 330–338 (1983).CrossRefGoogle Scholar
  16. 16.
    Meldrum, B. S., Metabolic factors during prolonged seizures and their relation to nerve cell death, In: “Status Epilepticus, Mechanisms of Brain Damage and Treatment”, Advances in Neurology, Vol. 34, A. V. Delgado-Escueta, D. M. Woodbury, A. A. Ward, Jr., and R. J. Porter, eds., Raven Press, New York (1983).Google Scholar
  17. 17.
    Meldrum, B. S., Cell damage in epilepsy and role of calcium in cytotoxicity, In: “Basic Mechanisms of the Epilepsies, Molecular and Cellular Approaches,” Advances in Neurology, Vol. 44, A. V. Delgado-Escueta, C. G. Wasterlain, D. M. Treiman, and R. J. Porter, eds., Raven Press, New York (1986).Google Scholar
  18. 18.
    Meldrum, B. S. and R. W. Horton, Physiology of status epilepticus in primates, Arch. Neurol., 28: 1–9 (1973).CrossRefGoogle Scholar
  19. 19.
    Meldrum, B. S. and B. Nilsson, Cerebral blood flow and metabolic rate early and late in prolonged epileptic seizures induced in rats by bicuculline, Brain, 99: 523–542, 1976.CrossRefGoogle Scholar
  20. 20.
    Navari, R. M., E. P. Wei, H. A. Kontos, and J. L. Patterson, Jr., Comparison of the open skull and cranial window preparations in the study of the cerebral microcirculation, Microvasc. Res., 16: 304–315 (1978).CrossRefGoogle Scholar
  21. 21.
    Olney, J. W., R. C. Collins, and R. S. Sloviter, Excitotoxic mechanisms of epileptic brain damage, In: “Basic Mechanisms of the Epilepsies, Molecular and Cellular Approaches,” Advances in Neurology, Vol. 44, A.V. Delgado-Escueta, D. M. Woodbury, A. A. Ward, Jr., and R. J. Porter, Eds., Raven Press, New York (1986).Google Scholar
  22. 22.
    Pinard, E., E. Tremblay, Y. Ben-Ari, and J. Seylaz, Blood flow compensates oxygen demand in the vulnerable CA3 region of the hippocampus during kainateinduced seizures, Neuroscience 13: 1039–1949 (1984).CrossRefGoogle Scholar
  23. 23.
    Plum, F., J. B. Posner, and B. Troy, Cerebral metabolic and circulatory responses to induced convulsions in animals, Arch. Neurol. (Chicago), 197: 629–628 (1968).Google Scholar
  24. 24.
    Robin, E. D., Dysoxia: abnormal tissue 02 utilization, Arch. Int. Med., 137: 905–910 (1977).CrossRefGoogle Scholar
  25. 25.
    Schiff, S. J. Schiff and G. G. Somjen, Overshoot of oxygen pressure in posthypoxic brain tissue, Brain Res., 344: 159–153 (1985).CrossRefGoogle Scholar
  26. 26.
    Scholz, W., The contribution of pathoanatomical research to the problem of epilepsy, Epilepsia, 1: 36–55 (1959).CrossRefGoogle Scholar
  27. 27.
    Siesjö, B. K., “Brain Energy Metabolism,” John Wiley & Sons, New York (1978).Google Scholar
  28. 28.
    Siesjö B. K., M. Ingvar, J. Folbergrova, and A. G. Chapman, Local cerebral circulation and metabolism in bicuculline-induced status epilepticus: relevance for development of cell damage, In: “Status Epilepticus, Mechanisms of Brain Damage and Treatment,” Advances in Neurology, Vol. 34, A.V. Delgado-Escueta, C. G. Waterlain, M. M. Treiman, and R. J. Porter, Raven Press, New York (1983).Google Scholar
  29. 29.
    Siesjö B. K. and T. Wieloch, Epileptic brain damage: pathophysiology and neuro-chemical pathology, In: “Basic Advances in Neurology,” Vol. 44, A. V. DelgadoEscueta, D. M. Woodbury, A. A. Ward, Jr., and R. J. Porter, eds., Raven Press, New York (1986).Google Scholar
  30. 30.
    Spielmeyer, W., 1927, Die pathogenese des epileptischen krampfes, Z. Neurol. Psychiatr., 109: 501–520 (1927).Google Scholar
  31. 31.
    Wasterlain, C. G., Mortality and morbidity from serial seizures, Epilepsia, 15: 155–176 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Norman R. Kreisman
    • 1
  1. 1.Department of PhysiologyTulane University School of MedicineNew OrleansUSA

Personalised recommendations