Skip to main content

Physiological Aspects of Brain Ischaemia in the Experimental Primate and Man

  • Chapter
Mechanisms of Cerebral Hypoxia and Stroke

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 35))

Abstract

This paper will review some of the general pathophysiology of focal ischaemia as determined in the experimental primate, and will attempt to draw some analogies with man in the circumstances of subarachnoid haemorrhage or acute vascular occlusion during aneurysm surgery. This latter presents us with the closest approximation to experimental laboratory studies which we are likely to have in man.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.R. Adey, Evidence for cerebral membrane effects of calcium derived from current gradient impedance and intracellular records, Exp. Neurol. 30: 78, (1971).

    Article  Google Scholar 

  2. A. Agnoli, C. Fieschi, and L. Bozzao, Autoregulation of cerebral blood flow. Studies during drug-induced hypertension in normal subjects and in patients with cerebral vascular diseases, Circulation 38: 800–812, (1968).

    Google Scholar 

  3. A. Agnoli, M. Prencipe, A.M. Priori, L. Bozzo, and C. Fieschi. Measurements of rCBF by intravenous injection of 133Xe: A comparative study with intra-arterial injection methods, In: “Cerebral Blood Flow”, M. Brock, C. Fieschi, D.H. Ingvar, N.A. Lassen, and K. Schurmann, eds., pp 31–34, Springer-Verlag, Berlin, (1969).

    Chapter  Google Scholar 

  4. J. Astrup, G. Blennow, and B. Nilsson, Effects of reduced cerebral blood flow on EEG pattern, cerebral extracellular potassium, and energy metabolism in the rat cortex during bicuculline-induced seizure, Brain Res. 177: 115, (1979).

    Article  Google Scholar 

  5. J. Astrup, L. Symon, N.M. Branston, and N.A. Lassen, Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia, Stroke, 8: 51, (1977).

    Article  Google Scholar 

  6. G. Austin, N. Horn, S: Rouhe, and W. Hayward, Description and early results of an intravenous radioisotope technique for measuring regional cerebral blood flow in man, Eur. Neurol. 8: 43–51, (1972).

    Article  Google Scholar 

  7. P. Bentivoglio, N.M. Branston, M. Mayberg, A.H.A. Habib, and L. Symon, The effects of acute proximal basilar artery occlusion on the primate cerebral circulation, (in preparation).

    Google Scholar 

  8. M.D. Bowen, N.J. Goodhard, A.M. Strong, C.B. Smith, P. White, N.M. Branston, L. Symon, and A.N. Davison, Biochemical indicies of brain structure, function and hypoxia in cortex from baboons with middle cerebral artery occlusion, Brain Res. 177: 503–507, (1976).

    Article  Google Scholar 

  9. G.H.C. Boysen, H.C. Engell, and W. Trojaborg, Effect of mechanical rCBF reduction on EEG in man, Stroke 4: 361, (1973).

    Google Scholar 

  10. N.M. Branston, A. Ladds, and L. Symon, Comparison of the effects of ischaemia on early components of the somatosensory evoked potential in brainstem, thalamus and cerebral cortex, J. Cereb. Blood Flow Metab. 4: 68–81, (1984).

    Article  Google Scholar 

  11. N.M. Branston, A.J. Strong, and L. Symon. Extracellular potassium activity, evoked potential and tissue blood flow, relationship during progressive ischaemia in baboon cerebral cortex, J. Neurol. Sci. 32: 305, (1977).

    Article  Google Scholar 

  12. N.M. Branston, A.J. Strong, and L. Symon, Impedance related to blood flow in cerebral cortex, J. Physiol. (Lond.), 275: 81p, (1978).

    Google Scholar 

  13. N.M. Branston, L. Symon, H.A. Crockard, and E. Pasztor, Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon, Exp. Neurol. 45: 195, (1974).

    Article  Google Scholar 

  14. J.B. Brierley, L.G. Salford, B.K. Siesjó, and F. Plum, Moderate hypoxic ischemia irreversibly damages rat brain in 30 minutes, Stroke 4: 339, (1973).

    Google Scholar 

  15. J.B. Brierley and L. Symon, The extent of infarcts in baboon brains three years after division of the middle cerebral artery, J. Neuropath. Appl. Neurobiol. 3: 217, (1977).

    Google Scholar 

  16. H. Collewijn and A. Van Harreveld, Membrane potential of cerebral cortical cells during spreading depression and asphyxia, Exp. Neurol. 15: 425, (1966a).

    Google Scholar 

  17. H. Collewijn and A. Van Harreveld, Intracellular recording spinal motorneurones during acute asphyxia, J. Physiol. (Lond.) 185: 1, (1966b).

    Google Scholar 

  18. B. Eklof, D.H. Ingvar, and E. Kägstrom, Persistence of cerebral blood flow autoregulation following chronic bilateral sympathectomy in the monkey, Acta Physiol. Scand. 82: 172–176, (1971).

    Article  Google Scholar 

  19. M. Fog, The relationship between the blood pressure and the tonic regulation of the pial arteries, J. Neurol. Neurosurg. Psychiat. 1: 187–197, (1928).

    Article  Google Scholar 

  20. M. Fog, Cerebral circulation II. Reaction of pial arteries to increase in blood pressure, Arch. Neurol. Psychiat. 41: 260–268, (1939).

    Google Scholar 

  21. B. Folkow and B. Lofving, The distensibility of the systemic resistance blood vessels, Acta. Physiol. Scand. 38: 37–52, (1956).

    Article  Google Scholar 

  22. H.S. Forbes, Physiological regulation of the cerebral circulation, Arch. Neurol. (Chic.) 43: 804–814, (1940).

    Google Scholar 

  23. S.L. Giannotta, J.E. McGillicuddy, and G.W. Kindt, Diagnosis and treatment of postoperative cerebral vasospasm, Surg. Neurol. 8: 286–290, (1977).

    Google Scholar 

  24. F.A. Gibbs, E.L. Gibbs, and W.G. Lennox, Changes in human cerebral blood flow consequent on alterations in blood gases, Amer. J. Physiol. 111: 557–563, (1936).

    Google Scholar 

  25. R.G. Grossman, J.W. Turner, J.D. Miller, and J.O. Rowan, The relationship between cortical electrical activity, cerebral perfusion pressure and cerebral blood flow during increased intracranial pressure, Stroke 4: 346, (1973).

    Google Scholar 

  26. E. Haggendal and B. Johansson, Effects of arterial carbon dioxide tension and oxygen saturation on cerebral blood flow autoregulation in dogs, Acta. Physiol. Scand. 66 (Suppl. 258): 27–53, (1965).

    Article  Google Scholar 

  27. A.J. Hansen and C.E. Olsen, Brain extracellular space during spreading depression and ischaemia, Acta. Physiol. Scand. 108: 355, (1981).

    Article  Google Scholar 

  28. A.M. Harper, Autoregulation of cerebral blood flow, Influence of the arterial blood pressure on the blood flow through the cerebral cortex, J. Neurol. Neurosurg. Psychiat. 29: 398–403, (1966).

    Article  Google Scholar 

  29. J. Harvey and T. Rasmussen, Occlusion of the middle cerebral artery, Arch. Neurol. (Chic.) 66: 20, (1951).

    Google Scholar 

  30. W.K. Hass, Beyond cerebral blood blow, metabolism and ischaemic thresholds: an examination of the role of calcium in the initiation of cerebral infarction, In: “Cerebral Vascular Disease 3,” J.S. Meyer, H. Lechner, M. Reivich, E.O. Ott, and A. Arabinar, eds., p 3, Excerpta Medica, Amsterdam (1981).

    Google Scholar 

  31. D.J. Hearse, Reperfusion of the ischemic myocardium, J. Mol. Cell. Cardiol. 9: 605, (1977).

    Article  Google Scholar 

  32. M.P. Heilbrun, J. Olesen, and N.A. Lassen, Regional cerebral blood flow studies in subarachnoid haemorrhage, J. Neurosurg. 37: 36–44, (1972).

    Article  Google Scholar 

  33. W.D. Heiss, T. Hayakawa, and A.G. Waltz, Cortical neuronal function during ischaemia: Effects of occlusion of one middle cerebral artery on single-unit activity in cats, Arch. Neurol. 33: 813, (1976).

    Article  Google Scholar 

  34. D.T. Hope, N.M. Branston, and L. Symon, Potential beneficial effects of induced hypertension in acute cerebral ischaemia, J. Neurol. Neurosurg. Psychiat. 41 (2): 185–190, (1978).

    Article  Google Scholar 

  35. D.T. Hope, N.M. Branston, and L. Symon, Restoration of neurological function with induced hypertension in acute experimental cerebral ischaemia, J. Neurol. Neurosurg. Psychiat. 41: 186, (1978).

    Google Scholar 

  36. K.A. Hossmann, S. Sakuki, and V. Zimmerman, Cation activities in reversible ischaemia of the cat brain, Stroke 8: 77, (1977).

    Article  Google Scholar 

  37. K.A. Hossmann and K. Sato, Effect of ischemia on the function of the sensori-motor cortex in cat, Electroenceph. Clin. Neurophysiol. 30: 535, (1971).

    Article  Google Scholar 

  38. K.A. Hossmann and F.J. Schuier, The metabolic (Cytotoxic) type of brain oedema following middle cerebral artery occlusion in cats, In: “Cerebrovascular Diseases, Proc. 11th Princeton Conf.”, T. Price and E. Nelson, eds., p. 141, Raven, New York (1978).

    Google Scholar 

  39. K.A. Hossmann and S. Takagi, Osmolality of brain in cerebral ischaemia, Exp. Neurol 51: 124, (1976).

    Article  Google Scholar 

  40. A.L. Hume and B.R. Cant, Conduction time in central somatosensory pathways in man, Electroencephalogr. Clin. Neurophysiol. 45:361–375,(1978).

    Article  Google Scholar 

  41. W.E. Hunt and R.M. Hess, Surgical risk as related to time of intervention in the repair of intracranial aneurysm, J. Neurosurg. 28: 14–19, (1968).

    Article  Google Scholar 

  42. L. Iliff, E. Zilkha, G.H. DuBoulay, J. Marshall, I.F. Moseley, R.W. Ross Russell, and L. Symon, Cerebrovascular carbon dioxide reactivity and conductance in patients awake and under general anaesthesia, Neurology 26 (9): 835–838, (1976).

    Article  Google Scholar 

  43. D.H. Ingvar, Normal and postanoxic regulation of the regional cerebral blood flow, In: “Recent Advances in the Study of Cerebral Circulation,” J.M. Taverns, H. Fischgold, and D. Dilenge, eds., p. 83, Thomas, Springfield, Illinois (1970).

    Google Scholar 

  44. D.H. Ingvar and N.A. Lassen, Quantitative determination of regional cerebral blood flow in man, Lancet 2: 806–807, (1961).

    Article  Google Scholar 

  45. A. Jabre, L. Symon, P.G. Richards and S. Redmond, Mean hemispheral cerebral blood flow changes after craniotomy. Significance and prognostic value, Acta. Neurochirurgica. 78: 13–20, (1985).

    Article  Google Scholar 

  46. H.A. Kaplan and D.H: Ford, “The Brain Vascular System,” Elsevier, London, (1966).

    Google Scholar 

  47. S.S. Kety and C.F. Schmidt, The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations, Am. J. Physiol. 143: 53–66, (1945).

    Google Scholar 

  48. E.J. Kosnik and W.E. Hunt, Postoperative hypertension in the management of patients with intracranial arterial aneurysms, J. Neurosurg. 45: 148–154, (1976).

    Article  Google Scholar 

  49. R.P. Kraig and C. Nicholson, Extracellular ionic variations during spreading depression, Neurosciences3: 1045, (1978).

    Article  Google Scholar 

  50. N.A. Lassen, Cerebral blood flow and oxygen consumption in man, Physiol. Rev. 39: 183–238, (1959).

    Google Scholar 

  51. G. Lazorthes and L. Campan, “La Circulation Cérébrale,” Editions Sandoz, Paris (1964).

    Google Scholar 

  52. L.F. Marshall, F. Welsh, F. Durity, R. Ljounsburg, D.I. Graham, and T.W. Langfitt, Experimental cerebral oligemia and ischemia produced by intracranial hypertension. Part 3: Brain energy metabolism, J. Neurosurg. 43: 323, (1975).

    Article  Google Scholar 

  53. J.S. Meyer and P. Marx, The pathogenesis of EEG changes during cerebral anoxia, In: “Handbook of EEG and Clinical Neurophysiology,” A. Remond, ed., p. 5, Elsevier, Amsterdam (1972).

    Google Scholar 

  54. R.B. Morawetz, U. DeGirolami, R.G. Ojemann, F.W. Marcoux, and R.M. Crowell, Cerebral blood flow determined by hydrogen clearance during middle artery occlusion in unanaesthetised monkeys, Stroke 9: 143, (1978).

    Article  Google Scholar 

  55. C. Nicholson, Dynamics of the brain cell microenvironment, Neurosci. Res. Prog. Bull. 18: 177, (1980).

    Google Scholar 

  56. M.D. O’Brien, A.G. Waltz, and M.M. Jordan, Ischaemic cerebral oedema, Distribution of water in brains in cats after occlusion of the middle cerebral artery, Arch. Neurol. 30: 456, (1974).

    Article  Google Scholar 

  57. W.B. Obrist, K.H. Thompson, Jr., H.S. Wang, and W.E. Wilkinson, Regional cerebral blood flow estimated by xenon-133 inhalation, Stroke d6: 245–256, (1975).

    Article  Google Scholar 

  58. E. Pasztor, L. Symon, N.W.C. Dorsch, and N.M. Branston, The hydrogen clearance method in assessment of blood flow in cortex, white matter and deep nuclei of baboons, Stroke 4: 556, (1973).

    Article  Google Scholar 

  59. O.B. Paulson, N.A. Lassen, and E. Skinhoj, Regional cerebral blood flow in apoplexy due without arterial occlusion, Neurology 21: 125–138, (1970).

    Article  Google Scholar 

  60. O.B. Paulson, Regional cerebral blood flow in apoplexy due to occlusion of the middle cerebral artery. Neurology 20: 63–77, (1970).

    Article  Google Scholar 

  61. M.B. Pritz, S.L. Giannotta, G.W. Kindt, J.E. McGillicuddy, and R.L. Prager, Treatment of patients with neurological deficit associated with cerebral vasospasm by intravascular volume expansion, Neurosurgery 3: 364–368, (1978).

    Article  Google Scholar 

  62. A. Przybtlski, Activity pattern of visceral cortex neurons during asphyxia, Exp. Neurol. 32: 12, (1971).

    Article  Google Scholar 

  63. C.E. Rapela and H.D. Green, Autoregulation of canine cerebral blood flow, Circulation Research (Suppl.) 15: 205–212, (1964).

    Google Scholar 

  64. M. Reivich, W.J.S. Marshall, and N. Kassell, Loss of autoregulation produced by cerebral trauma, In: “Cerebral Blood Flow,” M. Brock, C. Fieschi, and D.H. Ingvar, eds., Springer-Verlag, New York, pp. 205–208, (1969).

    Chapter  Google Scholar 

  65. H.J. Reulen, R. Graham, A. Fenske, M. Tsuyumu, and I. Klatzo, The role of tissue pressure and bulk flow in the formation and resolution of cold-induced edema, In: “Dynamics of Brain Edema,” M. Pappius and W. Feindel, eds., Springer, Berlin, pp. 103–112 (1976).

    Chapter  Google Scholar 

  66. J. Risberg, Regional cerebral blood flow measurements by 133-xenon inhalation: Methodology and applications in neuropsychology and psychiatry, Brain Lang. 9: 9–34, (1980).

    Article  Google Scholar 

  67. J. Risberg, Z. Ali, E.M. Wilson, E.L. Wills, and J.H. Halsey, Regional cerebral blood flow by xenon-133 inhalation, Stroke 6: 142–148, (1975)

    Article  Google Scholar 

  68. J. Rosenstein, M. Suzuki, L. Symon, and S. Redmond, Clinical use of a portable bedside cerebral blood flow machine in the management of aneurysmal subarachnoid haemorrhage, Neurosurgery 15: 519–525, (1984).

    Article  Google Scholar 

  69. F.A.X. Schanne, A.B. Kane, E.E. Young, and J.L. Farber, Calcium dependence of toxic cell death: A final common pathway, Science 206: 700, (1979).

    Article  Google Scholar 

  70. C.F. Schmidt, S.S. Kety, and H.H. Pennes, The gaseous metabolism of the brain of the monkey, Amer. J. Physiol. 143: 33–52, (1945).

    Google Scholar 

  71. A.C. Shen and R.B. Jennings, Kinetics of calcium accumulation in acute myocardial ischemic injury, Am. J. Pathol. 67: 441, (1972).

    Google Scholar 

  72. S. Strandgaard, J. Olesen, and E Skinhoj, Autoregulation of brain circulation in severe arterial hypertension, Br. Med. J. 1: 507–510, (1973).

    Article  Google Scholar 

  73. L. Symon, Studies of leptomeningeal collateral circulation in macacus rhesus, J. Physiol. (Lond.) 159: 68, (1961).

    Google Scholar 

  74. L. Symon, The concept of intracerebral steal, In: “International Anaesthesiology Clinics, Cerebral Circulation,” G. McDowall, ed., Little, Brown and Co., Boston, pp. 597–615, (1969).

    Google Scholar 

  75. L. Symon, Regional cerebrovascular responses to acute ischaemia in normocapnia and hypercapnia: An experimental study in baboons, J. Neurol. Neurosurg. Psychiat. 33: 756–762, (1970).

    Article  Google Scholar 

  76. L. Symon, The relationship between cerebral blood flow, evoked potentials and clinical features in cerebral ischaemia, Acta. Neurol. Scand. 62 (Suppl. 78): 175–190, (1980).

    Article  Google Scholar 

  77. L. Symon, N.M. Branston, and O. Chikovani, Ischaemic brain oedema following middle cerebral artery occlusion in baboons. Relationship between regional cerebral water content and blood flow at 1–2 hours, Stroke 10: 184, (1979).

    Article  Google Scholar 

  78. L. Symon, N.M. Branston, and A.J. Strong, Autoregulation in acute focal ischemia: An experimental study, Stroke, 7: 547–554, (1976).

    Article  Google Scholar 

  79. L. Symon, H.A. Crockard, N.W.C. Dorsch, N.M. Branston, and J. Juhasz, Local cerebral blood flow and vascular reactivity in a chronic stable stroke in baboons, Stroke, 6: 482–492, (1975).

    Article  Google Scholar 

  80. L. Symon, N.W.C. Dorsch, H.A. Crockard, N.M. Branston, and J.B. Brierley, Clinical features, local CBF and vascular reactivity in a chronic (3-year) stroke in baboons, In: “Blood Flow and Metabolism in the Brain,” A.M. Harper, W.B. Jennett, J.D. Miller, and J.O. Rowan, eds., p. 12. 10, Churchill Livingston, Edinburgh (1975).

    Google Scholar 

  81. L. Symon, K. Held, and N.W.C. Dorsch, A study of regional autoregulation in the cerebral circulation to increased perfusion pressure in normocapnia and hypercapnia, Stroke, 4: 139–147, (1973).

    Article  Google Scholar 

  82. L. Symon, E. Pasztor, and N.M. Branston, The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion: An experimental study by the technique of hydrogen clearance in baboons, Stroke, 5: 355–364, (1974).

    Article  Google Scholar 

  83. L. Symon, E. Pasztor, and N.W.C. Dorsch, Physiological responses of local areas of the cerebral circulation in experimental primates determined by the method of hydrogen clearance, Stroke 4: 632–642, (1973).

    Article  Google Scholar 

  84. D.J. Thomas, E. Zilha, S. Redmond, G.H. DuBoulay, J. Marshall, R.W. Ross Russell, and L. Symon, An intravenous xenon-133 clearance technique for measuring cerebral blood flow, J. Neurol. Sci. 40: 53–63, (1979).

    Article  Google Scholar 

  85. W. Trojaborg and G. Boysen, Relation between EEG, regional cerebral blood flow and internal carotid artery pressure during carotid endarterectomy, Electroencephalogr. Clin. Neurophysiol. 34: 61–69, (1973).

    Article  Google Scholar 

  86. A. Van Harreveld and S. Tachibana, Recovery of cerebral cortex from asphyxiation, Amer. J. Physiol. 202: 59, (1962).

    Google Scholar 

  87. A.G. Waltz, Effect of blood pressure on blood flow in ischemic and in nonischemic cerebral cortex, Neurology 18: 613–621, (1968).

    Article  Google Scholar 

  88. J.D. Weinstein and T.W. Langfitt, Responses of cortical vessels to brain compression. Observations through a transparent calvarium, Surg. Forum 18: 430–432, (1967).

    Google Scholar 

  89. A.N.E. Zimmerman and W.C. Hulsman, Paradoxical influence of calcium ions on the permeability of the cell membranes of the isolated rat heart, Nature (Lond.), 211: 646, (1966).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Symon, L. (1988). Physiological Aspects of Brain Ischaemia in the Experimental Primate and Man. In: Somjen, G. (eds) Mechanisms of Cerebral Hypoxia and Stroke. Advances in Behavioral Biology, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5562-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5562-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5564-9

  • Online ISBN: 978-1-4684-5562-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics