Physiological Aspects of Brain Ischaemia in the Experimental Primate and Man

  • Lindsay Symon
Part of the Advances in Behavioral Biology book series (ABBI, volume 35)


This paper will review some of the general pathophysiology of focal ischaemia as determined in the experimental primate, and will attempt to draw some analogies with man in the circumstances of subarachnoid haemorrhage or acute vascular occlusion during aneurysm surgery. This latter presents us with the closest approximation to experimental laboratory studies which we are likely to have in man.


Cerebral Blood Flow Middle Cerebral Artery Middle Cerebral Artery Occlusion Regional Cerebral Blood Flow Cerebral Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.R. Adey, Evidence for cerebral membrane effects of calcium derived from current gradient impedance and intracellular records, Exp. Neurol. 30: 78, (1971).CrossRefGoogle Scholar
  2. 2.
    A. Agnoli, C. Fieschi, and L. Bozzao, Autoregulation of cerebral blood flow. Studies during drug-induced hypertension in normal subjects and in patients with cerebral vascular diseases, Circulation 38: 800–812, (1968).Google Scholar
  3. 3.
    A. Agnoli, M. Prencipe, A.M. Priori, L. Bozzo, and C. Fieschi. Measurements of rCBF by intravenous injection of 133Xe: A comparative study with intra-arterial injection methods, In: “Cerebral Blood Flow”, M. Brock, C. Fieschi, D.H. Ingvar, N.A. Lassen, and K. Schurmann, eds., pp 31–34, Springer-Verlag, Berlin, (1969).CrossRefGoogle Scholar
  4. 4.
    J. Astrup, G. Blennow, and B. Nilsson, Effects of reduced cerebral blood flow on EEG pattern, cerebral extracellular potassium, and energy metabolism in the rat cortex during bicuculline-induced seizure, Brain Res. 177: 115, (1979).CrossRefGoogle Scholar
  5. 5.
    J. Astrup, L. Symon, N.M. Branston, and N.A. Lassen, Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia, Stroke, 8: 51, (1977).CrossRefGoogle Scholar
  6. 6.
    G. Austin, N. Horn, S: Rouhe, and W. Hayward, Description and early results of an intravenous radioisotope technique for measuring regional cerebral blood flow in man, Eur. Neurol. 8: 43–51, (1972).CrossRefGoogle Scholar
  7. 7.
    P. Bentivoglio, N.M. Branston, M. Mayberg, A.H.A. Habib, and L. Symon, The effects of acute proximal basilar artery occlusion on the primate cerebral circulation, (in preparation).Google Scholar
  8. 8.
    M.D. Bowen, N.J. Goodhard, A.M. Strong, C.B. Smith, P. White, N.M. Branston, L. Symon, and A.N. Davison, Biochemical indicies of brain structure, function and hypoxia in cortex from baboons with middle cerebral artery occlusion, Brain Res. 177: 503–507, (1976).CrossRefGoogle Scholar
  9. 9.
    G.H.C. Boysen, H.C. Engell, and W. Trojaborg, Effect of mechanical rCBF reduction on EEG in man, Stroke 4: 361, (1973).Google Scholar
  10. 10.
    N.M. Branston, A. Ladds, and L. Symon, Comparison of the effects of ischaemia on early components of the somatosensory evoked potential in brainstem, thalamus and cerebral cortex, J. Cereb. Blood Flow Metab. 4: 68–81, (1984).CrossRefGoogle Scholar
  11. 11.
    N.M. Branston, A.J. Strong, and L. Symon. Extracellular potassium activity, evoked potential and tissue blood flow, relationship during progressive ischaemia in baboon cerebral cortex, J. Neurol. Sci. 32: 305, (1977).CrossRefGoogle Scholar
  12. 12.
    N.M. Branston, A.J. Strong, and L. Symon, Impedance related to blood flow in cerebral cortex, J. Physiol. (Lond.), 275: 81p, (1978).Google Scholar
  13. 13.
    N.M. Branston, L. Symon, H.A. Crockard, and E. Pasztor, Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon, Exp. Neurol. 45: 195, (1974).CrossRefGoogle Scholar
  14. 14.
    J.B. Brierley, L.G. Salford, B.K. Siesjó, and F. Plum, Moderate hypoxic ischemia irreversibly damages rat brain in 30 minutes, Stroke 4: 339, (1973).Google Scholar
  15. 15.
    J.B. Brierley and L. Symon, The extent of infarcts in baboon brains three years after division of the middle cerebral artery, J. Neuropath. Appl. Neurobiol. 3: 217, (1977).Google Scholar
  16. 16.
    H. Collewijn and A. Van Harreveld, Membrane potential of cerebral cortical cells during spreading depression and asphyxia, Exp. Neurol. 15: 425, (1966a).Google Scholar
  17. 17.
    H. Collewijn and A. Van Harreveld, Intracellular recording spinal motorneurones during acute asphyxia, J. Physiol. (Lond.) 185: 1, (1966b).Google Scholar
  18. 18.
    B. Eklof, D.H. Ingvar, and E. Kägstrom, Persistence of cerebral blood flow autoregulation following chronic bilateral sympathectomy in the monkey, Acta Physiol. Scand. 82: 172–176, (1971).CrossRefGoogle Scholar
  19. 19.
    M. Fog, The relationship between the blood pressure and the tonic regulation of the pial arteries, J. Neurol. Neurosurg. Psychiat. 1: 187–197, (1928).CrossRefGoogle Scholar
  20. 20.
    M. Fog, Cerebral circulation II. Reaction of pial arteries to increase in blood pressure, Arch. Neurol. Psychiat. 41: 260–268, (1939).Google Scholar
  21. 21.
    B. Folkow and B. Lofving, The distensibility of the systemic resistance blood vessels, Acta. Physiol. Scand. 38: 37–52, (1956).CrossRefGoogle Scholar
  22. H.S. Forbes, Physiological regulation of the cerebral circulation, Arch. Neurol. (Chic.) 43: 804–814, (1940).Google Scholar
  23. 23.
    S.L. Giannotta, J.E. McGillicuddy, and G.W. Kindt, Diagnosis and treatment of postoperative cerebral vasospasm, Surg. Neurol. 8: 286–290, (1977).Google Scholar
  24. 24.
    F.A. Gibbs, E.L. Gibbs, and W.G. Lennox, Changes in human cerebral blood flow consequent on alterations in blood gases, Amer. J. Physiol. 111: 557–563, (1936).Google Scholar
  25. 25.
    R.G. Grossman, J.W. Turner, J.D. Miller, and J.O. Rowan, The relationship between cortical electrical activity, cerebral perfusion pressure and cerebral blood flow during increased intracranial pressure, Stroke 4: 346, (1973).Google Scholar
  26. 26.
    E. Haggendal and B. Johansson, Effects of arterial carbon dioxide tension and oxygen saturation on cerebral blood flow autoregulation in dogs, Acta. Physiol. Scand. 66 (Suppl. 258): 27–53, (1965).CrossRefGoogle Scholar
  27. 27.
    A.J. Hansen and C.E. Olsen, Brain extracellular space during spreading depression and ischaemia, Acta. Physiol. Scand. 108: 355, (1981).CrossRefGoogle Scholar
  28. 28.
    A.M. Harper, Autoregulation of cerebral blood flow, Influence of the arterial blood pressure on the blood flow through the cerebral cortex, J. Neurol. Neurosurg. Psychiat. 29: 398–403, (1966).CrossRefGoogle Scholar
  29. 29.
    J. Harvey and T. Rasmussen, Occlusion of the middle cerebral artery, Arch. Neurol. (Chic.) 66: 20, (1951).Google Scholar
  30. 30.
    W.K. Hass, Beyond cerebral blood blow, metabolism and ischaemic thresholds: an examination of the role of calcium in the initiation of cerebral infarction, In: “Cerebral Vascular Disease 3,” J.S. Meyer, H. Lechner, M. Reivich, E.O. Ott, and A. Arabinar, eds., p 3, Excerpta Medica, Amsterdam (1981).Google Scholar
  31. 31.
    D.J. Hearse, Reperfusion of the ischemic myocardium, J. Mol. Cell. Cardiol. 9: 605, (1977).CrossRefGoogle Scholar
  32. 32.
    M.P. Heilbrun, J. Olesen, and N.A. Lassen, Regional cerebral blood flow studies in subarachnoid haemorrhage, J. Neurosurg. 37: 36–44, (1972).CrossRefGoogle Scholar
  33. 33.
    W.D. Heiss, T. Hayakawa, and A.G. Waltz, Cortical neuronal function during ischaemia: Effects of occlusion of one middle cerebral artery on single-unit activity in cats, Arch. Neurol. 33: 813, (1976).CrossRefGoogle Scholar
  34. 34.
    D.T. Hope, N.M. Branston, and L. Symon, Potential beneficial effects of induced hypertension in acute cerebral ischaemia, J. Neurol. Neurosurg. Psychiat. 41 (2): 185–190, (1978).CrossRefGoogle Scholar
  35. 35.
    D.T. Hope, N.M. Branston, and L. Symon, Restoration of neurological function with induced hypertension in acute experimental cerebral ischaemia, J. Neurol. Neurosurg. Psychiat. 41: 186, (1978).Google Scholar
  36. 36.
    K.A. Hossmann, S. Sakuki, and V. Zimmerman, Cation activities in reversible ischaemia of the cat brain, Stroke 8: 77, (1977).CrossRefGoogle Scholar
  37. 37.
    K.A. Hossmann and K. Sato, Effect of ischemia on the function of the sensori-motor cortex in cat, Electroenceph. Clin. Neurophysiol. 30: 535, (1971).CrossRefGoogle Scholar
  38. 38.
    K.A. Hossmann and F.J. Schuier, The metabolic (Cytotoxic) type of brain oedema following middle cerebral artery occlusion in cats, In: “Cerebrovascular Diseases, Proc. 11th Princeton Conf.”, T. Price and E. Nelson, eds., p. 141, Raven, New York (1978).Google Scholar
  39. 39.
    K.A. Hossmann and S. Takagi, Osmolality of brain in cerebral ischaemia, Exp. Neurol 51: 124, (1976).CrossRefGoogle Scholar
  40. 40.
    A.L. Hume and B.R. Cant, Conduction time in central somatosensory pathways in man, Electroencephalogr. Clin. Neurophysiol. 45:361–375,(1978).CrossRefGoogle Scholar
  41. 40a.
    W.E. Hunt and R.M. Hess, Surgical risk as related to time of intervention in the repair of intracranial aneurysm, J. Neurosurg. 28: 14–19, (1968).CrossRefGoogle Scholar
  42. 41.
    L. Iliff, E. Zilkha, G.H. DuBoulay, J. Marshall, I.F. Moseley, R.W. Ross Russell, and L. Symon, Cerebrovascular carbon dioxide reactivity and conductance in patients awake and under general anaesthesia, Neurology 26 (9): 835–838, (1976).CrossRefGoogle Scholar
  43. 42.
    D.H. Ingvar, Normal and postanoxic regulation of the regional cerebral blood flow, In: “Recent Advances in the Study of Cerebral Circulation,” J.M. Taverns, H. Fischgold, and D. Dilenge, eds., p. 83, Thomas, Springfield, Illinois (1970).Google Scholar
  44. 43.
    D.H. Ingvar and N.A. Lassen, Quantitative determination of regional cerebral blood flow in man, Lancet 2: 806–807, (1961).CrossRefGoogle Scholar
  45. 44.
    A. Jabre, L. Symon, P.G. Richards and S. Redmond, Mean hemispheral cerebral blood flow changes after craniotomy. Significance and prognostic value, Acta. Neurochirurgica. 78: 13–20, (1985).CrossRefGoogle Scholar
  46. 45.
    H.A. Kaplan and D.H: Ford, “The Brain Vascular System,” Elsevier, London, (1966).Google Scholar
  47. 46.
    S.S. Kety and C.F. Schmidt, The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations, Am. J. Physiol. 143: 53–66, (1945).Google Scholar
  48. 47.
    E.J. Kosnik and W.E. Hunt, Postoperative hypertension in the management of patients with intracranial arterial aneurysms, J. Neurosurg. 45: 148–154, (1976).CrossRefGoogle Scholar
  49. 48.
    R.P. Kraig and C. Nicholson, Extracellular ionic variations during spreading depression, Neurosciences3: 1045, (1978).CrossRefGoogle Scholar
  50. 49.
    N.A. Lassen, Cerebral blood flow and oxygen consumption in man, Physiol. Rev. 39: 183–238, (1959).Google Scholar
  51. 50.
    G. Lazorthes and L. Campan, “La Circulation Cérébrale,” Editions Sandoz, Paris (1964).Google Scholar
  52. 51.
    L.F. Marshall, F. Welsh, F. Durity, R. Ljounsburg, D.I. Graham, and T.W. Langfitt, Experimental cerebral oligemia and ischemia produced by intracranial hypertension. Part 3: Brain energy metabolism, J. Neurosurg. 43: 323, (1975).CrossRefGoogle Scholar
  53. 52.
    J.S. Meyer and P. Marx, The pathogenesis of EEG changes during cerebral anoxia, In: “Handbook of EEG and Clinical Neurophysiology,” A. Remond, ed., p. 5, Elsevier, Amsterdam (1972).Google Scholar
  54. 53.
    R.B. Morawetz, U. DeGirolami, R.G. Ojemann, F.W. Marcoux, and R.M. Crowell, Cerebral blood flow determined by hydrogen clearance during middle artery occlusion in unanaesthetised monkeys, Stroke 9: 143, (1978).CrossRefGoogle Scholar
  55. 54.
    C. Nicholson, Dynamics of the brain cell microenvironment, Neurosci. Res. Prog. Bull. 18: 177, (1980).Google Scholar
  56. 55.
    M.D. O’Brien, A.G. Waltz, and M.M. Jordan, Ischaemic cerebral oedema, Distribution of water in brains in cats after occlusion of the middle cerebral artery, Arch. Neurol. 30: 456, (1974).CrossRefGoogle Scholar
  57. 56.
    W.B. Obrist, K.H. Thompson, Jr., H.S. Wang, and W.E. Wilkinson, Regional cerebral blood flow estimated by xenon-133 inhalation, Stroke d6: 245–256, (1975).CrossRefGoogle Scholar
  58. 57.
    E. Pasztor, L. Symon, N.W.C. Dorsch, and N.M. Branston, The hydrogen clearance method in assessment of blood flow in cortex, white matter and deep nuclei of baboons, Stroke 4: 556, (1973).CrossRefGoogle Scholar
  59. 58.
    O.B. Paulson, N.A. Lassen, and E. Skinhoj, Regional cerebral blood flow in apoplexy due without arterial occlusion, Neurology 21: 125–138, (1970).CrossRefGoogle Scholar
  60. 59.
    O.B. Paulson, Regional cerebral blood flow in apoplexy due to occlusion of the middle cerebral artery. Neurology 20: 63–77, (1970).CrossRefGoogle Scholar
  61. 60.
    M.B. Pritz, S.L. Giannotta, G.W. Kindt, J.E. McGillicuddy, and R.L. Prager, Treatment of patients with neurological deficit associated with cerebral vasospasm by intravascular volume expansion, Neurosurgery 3: 364–368, (1978).CrossRefGoogle Scholar
  62. 61.
    A. Przybtlski, Activity pattern of visceral cortex neurons during asphyxia, Exp. Neurol. 32: 12, (1971).CrossRefGoogle Scholar
  63. 62.
    C.E. Rapela and H.D. Green, Autoregulation of canine cerebral blood flow, Circulation Research (Suppl.) 15: 205–212, (1964).Google Scholar
  64. 63.
    M. Reivich, W.J.S. Marshall, and N. Kassell, Loss of autoregulation produced by cerebral trauma, In: “Cerebral Blood Flow,” M. Brock, C. Fieschi, and D.H. Ingvar, eds., Springer-Verlag, New York, pp. 205–208, (1969).CrossRefGoogle Scholar
  65. 63a.
    H.J. Reulen, R. Graham, A. Fenske, M. Tsuyumu, and I. Klatzo, The role of tissue pressure and bulk flow in the formation and resolution of cold-induced edema, In: “Dynamics of Brain Edema,” M. Pappius and W. Feindel, eds., Springer, Berlin, pp. 103–112 (1976).CrossRefGoogle Scholar
  66. 64.
    J. Risberg, Regional cerebral blood flow measurements by 133-xenon inhalation: Methodology and applications in neuropsychology and psychiatry, Brain Lang. 9: 9–34, (1980).CrossRefGoogle Scholar
  67. 65.
    J. Risberg, Z. Ali, E.M. Wilson, E.L. Wills, and J.H. Halsey, Regional cerebral blood flow by xenon-133 inhalation, Stroke 6: 142–148, (1975)CrossRefGoogle Scholar
  68. 66.
    J. Rosenstein, M. Suzuki, L. Symon, and S. Redmond, Clinical use of a portable bedside cerebral blood flow machine in the management of aneurysmal subarachnoid haemorrhage, Neurosurgery 15: 519–525, (1984).CrossRefGoogle Scholar
  69. 67.
    F.A.X. Schanne, A.B. Kane, E.E. Young, and J.L. Farber, Calcium dependence of toxic cell death: A final common pathway, Science 206: 700, (1979).CrossRefGoogle Scholar
  70. 68.
    C.F. Schmidt, S.S. Kety, and H.H. Pennes, The gaseous metabolism of the brain of the monkey, Amer. J. Physiol. 143: 33–52, (1945).Google Scholar
  71. 69.
    A.C. Shen and R.B. Jennings, Kinetics of calcium accumulation in acute myocardial ischemic injury, Am. J. Pathol. 67: 441, (1972).Google Scholar
  72. 70.
    S. Strandgaard, J. Olesen, and E Skinhoj, Autoregulation of brain circulation in severe arterial hypertension, Br. Med. J. 1: 507–510, (1973).CrossRefGoogle Scholar
  73. 71.
    L. Symon, Studies of leptomeningeal collateral circulation in macacus rhesus, J. Physiol. (Lond.) 159: 68, (1961).Google Scholar
  74. 72.
    L. Symon, The concept of intracerebral steal, In: “International Anaesthesiology Clinics, Cerebral Circulation,” G. McDowall, ed., Little, Brown and Co., Boston, pp. 597–615, (1969).Google Scholar
  75. 73.
    L. Symon, Regional cerebrovascular responses to acute ischaemia in normocapnia and hypercapnia: An experimental study in baboons, J. Neurol. Neurosurg. Psychiat. 33: 756–762, (1970).CrossRefGoogle Scholar
  76. 74.
    L. Symon, The relationship between cerebral blood flow, evoked potentials and clinical features in cerebral ischaemia, Acta. Neurol. Scand. 62 (Suppl. 78): 175–190, (1980).CrossRefGoogle Scholar
  77. 75.
    L. Symon, N.M. Branston, and O. Chikovani, Ischaemic brain oedema following middle cerebral artery occlusion in baboons. Relationship between regional cerebral water content and blood flow at 1–2 hours, Stroke 10: 184, (1979).CrossRefGoogle Scholar
  78. 76.
    L. Symon, N.M. Branston, and A.J. Strong, Autoregulation in acute focal ischemia: An experimental study, Stroke, 7: 547–554, (1976).CrossRefGoogle Scholar
  79. 77.
    L. Symon, H.A. Crockard, N.W.C. Dorsch, N.M. Branston, and J. Juhasz, Local cerebral blood flow and vascular reactivity in a chronic stable stroke in baboons, Stroke, 6: 482–492, (1975).CrossRefGoogle Scholar
  80. 78.
    L. Symon, N.W.C. Dorsch, H.A. Crockard, N.M. Branston, and J.B. Brierley, Clinical features, local CBF and vascular reactivity in a chronic (3-year) stroke in baboons, In: “Blood Flow and Metabolism in the Brain,” A.M. Harper, W.B. Jennett, J.D. Miller, and J.O. Rowan, eds., p. 12. 10, Churchill Livingston, Edinburgh (1975).Google Scholar
  81. 79.
    L. Symon, K. Held, and N.W.C. Dorsch, A study of regional autoregulation in the cerebral circulation to increased perfusion pressure in normocapnia and hypercapnia, Stroke, 4: 139–147, (1973).CrossRefGoogle Scholar
  82. 80.
    L. Symon, E. Pasztor, and N.M. Branston, The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion: An experimental study by the technique of hydrogen clearance in baboons, Stroke, 5: 355–364, (1974).CrossRefGoogle Scholar
  83. 81.
    L. Symon, E. Pasztor, and N.W.C. Dorsch, Physiological responses of local areas of the cerebral circulation in experimental primates determined by the method of hydrogen clearance, Stroke 4: 632–642, (1973).CrossRefGoogle Scholar
  84. 82.
    D.J. Thomas, E. Zilha, S. Redmond, G.H. DuBoulay, J. Marshall, R.W. Ross Russell, and L. Symon, An intravenous xenon-133 clearance technique for measuring cerebral blood flow, J. Neurol. Sci. 40: 53–63, (1979).CrossRefGoogle Scholar
  85. 83.
    W. Trojaborg and G. Boysen, Relation between EEG, regional cerebral blood flow and internal carotid artery pressure during carotid endarterectomy, Electroencephalogr. Clin. Neurophysiol. 34: 61–69, (1973).CrossRefGoogle Scholar
  86. 84.
    A. Van Harreveld and S. Tachibana, Recovery of cerebral cortex from asphyxiation, Amer. J. Physiol. 202: 59, (1962).Google Scholar
  87. 85.
    A.G. Waltz, Effect of blood pressure on blood flow in ischemic and in nonischemic cerebral cortex, Neurology 18: 613–621, (1968).CrossRefGoogle Scholar
  88. 86.
    J.D. Weinstein and T.W. Langfitt, Responses of cortical vessels to brain compression. Observations through a transparent calvarium, Surg. Forum 18: 430–432, (1967).Google Scholar
  89. 87.
    A.N.E. Zimmerman and W.C. Hulsman, Paradoxical influence of calcium ions on the permeability of the cell membranes of the isolated rat heart, Nature (Lond.), 211: 646, (1966).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Lindsay Symon
    • 1
  1. 1.Gough-Cooper Department of Neurological SurgeryThe National HospitalLondonEngland

Personalised recommendations