• J. C. Fuggle
  • G. A. Sawatzky
  • J. W. Allen
Part of the NATO ASI Series book series (NSSB, volume 184)


It was appropriate to consider high temperature superconductors at this meeting because it is already clear that the Cu d electrons are strongly correlated and that many of the questions being asked about the copper perovskites are the same as those asked about NiO or CuO. To understand the relevance of the present developments in high temperature superconductivity it is desirable to recall some of the earlier developments. Although superconductivity was discovered in 1911,1,2 the first really important insight into the phenomena came in the 1930’s after the discovery of Meissner and Ochsenfeld that magnetic flux lines were actively expelled from a sample when the material in a magnetic field was cooled through the transition to the superconducting state3. This led to the concept that diamagnetism was a fundamental characteristic of the superconducting state, and to the London equations4,5.


High Temperature Superconductor Superconducting State Heavy Fermion Short Coherence Length Magnetic Flux Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Kamerlingh Ormes, Leiden Comm. 124C, (1911).Google Scholar
  2. 2.
    H. Kamerlingh Onnes, Akad. van Wetenschappen (Amsterdam) 14:113, 818 (1911).Google Scholar
  3. 3.
    W. Meissner and R. Ochsenfeld, Naturwiss 21:787 (1933).ADSCrossRefGoogle Scholar
  4. 4.
    F. London and H. London, Proc. Roy. Soc. A149:71 (1935)ADSGoogle Scholar
  5. 4a.
    F. London and H. London, Proc. Roy. Soc. A152-.24 (1935).Google Scholar
  6. 5.
    F. London, Phys. Rev. 74:562 (1948).ADSMATHCrossRefGoogle Scholar
  7. 6.
    V.L. Ginsburg, JETP (USSR) 14:134 (1946)Google Scholar
  8. 6.
    V.L. Ginsburg, Uspekhi Fiz Nauk 48:25 (1952).Google Scholar
  9. 7.
    J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. 106:162 (1957)MathSciNetADSCrossRefGoogle Scholar
  10. 7a.
    J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. 108:1175 (1957).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 8.
    C. Kittel, in: “Introduction to Solid State Physics”, 5th Ed. J. Wiley, New York (1976).Google Scholar
  12. 9.
    “Superconductivity in Ternary Compounds”, Ed. O. Fischer and M.B. Maple, Springer, N.Y. (1982); “Proceedings of the Adriatico Conference on High Temperature Superconductors”, Eds. S. Lundqvist, E. Tosatti, M. Tosi and Yu Lu, World Scientific, Singapore, (1987); J. Franse, private communication.Google Scholar
  13. 10.
    H.P. Frederikse, J. F. Schooley, W.R. Thurber, E. Pfeiffer and W.R. Holser, Phys. Rev. Lett. 16:579 (1966).ADSCrossRefGoogle Scholar
  14. 11.
    D.C. Johnston, J. Low Temp. Phys. 25:145 (1976)ADSCrossRefGoogle Scholar
  15. 11a.
    R.W. McCallum, D.C. Johnston, C.A. Luengo and M.B. Maple, J. Low Temp Phys. 25:177 (1976).ADSCrossRefGoogle Scholar
  16. 12.
    A.W. Sleight, J.L. Gillson and P.E. Bierstedt, Solid State Commun. 17:27 (1975)ADSCrossRefGoogle Scholar
  17. 12a.
    B. Batlogg, Physica 126B;275 (1984) and references therein.Google Scholar
  18. 13.
    O. Fischer, H. Jones, C. Bongi, M. Sergent and R. Chevrel, J. Phys. C 7:L450 (1974).ADSCrossRefGoogle Scholar
  19. 14.
    W. Heisenberg, Z. Naturforschung 2a:424 (1947).Google Scholar
  20. 15.
    N. Bohr, Physica 19:761 (1953)Google Scholar
  21. 15.
    H.B.G. Casimir Physica 19:764 (1953).CrossRefGoogle Scholar
  22. 16.
    H. Fröhlich, Phil Mag. 41:221 (1950)MATHGoogle Scholar
  23. 16.
    H. Fröhlich, Phys. Rev. 79:845 (1950).ADSMATHCrossRefGoogle Scholar
  24. 17.
    J. Bardeen, Rev. Mod. Phys. 23:261 (1951).ADSMATHCrossRefGoogle Scholar
  25. 18.
    G.M. Eliashberg, Sov. Phys. JETP, 11:696 (1960).Google Scholar
  26. 19.
    Mc Millan, Phys. Rev. 167:331 (1968).ADSCrossRefGoogle Scholar
  27. 20.
    S. Mitsuda, G. Shirane, S.K. Sinha, D.C. Johnston, M.S. Alvarez, D. Vaknin and D.E. Moncton, Phys. Rev. B 36:822 (1987).ADSCrossRefGoogle Scholar
  28. 21.
    see e.g. J. Orenstein, G.A. Thomas, D.H. Rapkine, C.G. Bethea, B.F. Levine, B. Batlogg, R.J. Cava, D.W. Johnson Jr. and E.A. Rietman, Phys. Rev. B36:8829 (1987)Google Scholar
  29. 21.
    K. Kamaras, C.D. Porter, M.G. Doss, S.L. Herr, D.B. Tanner, D.A. Born, J.E. Greedman, A.H. O’Reilly, C.V. Stager and T. Timusk, Phys. Rev. Lett. 59:919 (1987)ADSCrossRefGoogle Scholar
  30. 21.
    S. Tajima et al. Jpn. J. Appl. Phys. 26:L432 (1987).ADSCrossRefGoogle Scholar
  31. 22.
    L.F. Mattheis, Phys. Rev. Lett. 58:1028 (1987)ADSCrossRefGoogle Scholar
  32. 22a.
    J. Yu, A.J. Freeman and J.H. Xu, Phys. Rev. Lett. 58:1035 (1987)ADSCrossRefGoogle Scholar
  33. 22b.
    K. Takegahara, H. Harima and A. Yanase, Jap. J. Appl. Phys. 26:L352 (1987)ADSCrossRefGoogle Scholar
  34. 22c.
    R.A. de Groot, H. Gutfreund and M. Weger, Solid State Commun. 63:451 (1987)CrossRefGoogle Scholar
  35. 22d.
    W. Temmerman, G.M. Stocks, P.J. Durham and P.A. Sterne, J. Phys. F. Met. Phys. 17:L135 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. C. Fuggle
    • 1
  • G. A. Sawatzky
    • 2
  • J. W. Allen
    • 3
  1. 1.University of NijmegenNijmegenThe Netherlands
  2. 2.University of GroningenGroningenThe Netherlands
  3. 3.The University of MichiganAnn ArborUSA

Personalised recommendations