High Energy Spectroscopies

  • J. W. Allen
Part of the NATO ASI Series book series (NSSB, volume 184)


In the past ten years the so-called high energy spectroscopies have had a major impact on the understanding of the electronic structure of narrow-band systems. These spectroscopies have been used to determine the occupations, valence states and spectral weight distributions of the narrow band electronic states in question, 3d for transition metals, 4f for rare earths, or 5f for actinides. It is found that the spectra show systematic differences from the results of solid state local density functional calculations and thereby reveal the presence of the large Coulomb interactions in these systems. For pure transition metals1,2 and some metallic transition metal compounds,2,3 the spectra have been modeled with some success by the Hubbard Hamiltonian. For the rare earths4 and certain insulating transition metal compounds,2,5–11 the spectra can be described quite well by the impurity Anderson Hamiltonian, and if the Hamiltonian parameters thus obtained are used to evaluate quantities of significance for the low energy properties of the system, such as characteristic energies for loss of magnetic moments,4 or for magnetic ordering9, the results are in reasonable agreement with the values obtained directly from low energy experiments.


Core Hole Transition Metal Compound Rare Earths4 Kondo Resonance Superconducting Copper Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. R. Penn, Phys. Rev. Letters. 42:921 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    L. C. Davis, J. Appl. Phys.. 59:R25 (1986).ADSCrossRefGoogle Scholar
  3. 3.
    O. Bisi, C. Calandra, U. Del Penninko, P. Sassaroli and S. Valeri, Phys. Rev. B. 30:5696 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    J. W. Allen, S.-J. Oh, O. Gunnarsson, K. Schonhammer, M. B. Maple, M. S. Torikachvili and I. Lindau, Adv. in Physics, 35:275 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    G. van der Laan, C. Westra, C. Haas and G.A. Sawatzky, Phys. Rev. B, 23:4369 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    G. van der Laan, Solid State Commun., 42:165 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    G. A. Sawatzky, in “Studies in Inorganic Chemistry,” Volume 3, (Elsevier, Amsterdam, 1983) page 3.Google Scholar
  8. 8.
    A. Fujimori and F. Minami, Phys. Rev. B, 30:957 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    G. A. Sawatzky and J. W. Allen, Phys. Rev. Letters, 53:2339 (1984).ADSCrossRefGoogle Scholar
  10. 10.
    J. Zaanen, G. A. Sawatzky and J. W. Allen, Phys. Rev. Letters, 55:418 (1985)ADSCrossRefGoogle Scholar
  11. 11.
    J. Zaanen, G. A. Sawatzky and J. W. Allen, J. Magn. and Mag. Mat., 54–57:607 (1986).Google Scholar
  12. 12.
    D. M. Wieliczka, C. G. Olson and D. W. Lynch, Phys. Rev. B, 29:3028 (1984).ADSCrossRefGoogle Scholar
  13. 13.
    J.-S. Kang, J. W. Allen, M. B. Maple, M.S. Torikachvili, B. Pate, W. Ellis, and I. Lindau, submitted for publication.Google Scholar
  14. 14.
    F. Patthey, B. Delley, W.-D. Schneider and Y. Baer, Phys. Rev. Lett., 55:1518 (1985).ADSCrossRefGoogle Scholar
  15. 15.
    F. Patthey. W.-D. Schneider, Y. Baer and B. Delley, Phys. Rev. Lett., 55:1518 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    M. R. Norman, D. D. Koelling, A. J. Freeman, H. J. F. Jansen, B. I. Min, T. Oguchi, Ling Ye, Phys. Rev. Lett., 53:1673 (1984).ADSCrossRefGoogle Scholar
  17. 17.
    M. R. Norman and D. D. Koelling, Phys. Rev. B, 31:6251 (1985).ADSCrossRefGoogle Scholar
  18. 18.
    M. R. Norman, Phys. Rev. B, 31:6261 (1985).ADSCrossRefGoogle Scholar
  19. 19.
    A. McMahan and R. M. Martin, unpublished work on CeO2.Google Scholar
  20. 20.
    P. Wachterin “Valence Instabilities,” edited by P. Wachter and H. Boppart (North-Holland, Amsterdam, 1982) p. 145.Google Scholar
  21. 21.
    E. Wuilloud, B. Delley, W.-D. Schneider and Y. Baer, Phys. Rev. Lett., 53:202 (1984).ADSCrossRefGoogle Scholar
  22. 22.
    G. Kalkowski, C. Laubschat, W. D. Brewer, E.V. Sampathkumaran, M. Domke and G. Kaindl, Phys. Rev. B, 32:2717 (1985).ADSCrossRefGoogle Scholar
  23. 23.
    G. Kaindl, G. K. Wertheim, G. Schmiester and E. V. Sampathkumaran, Phys. Rev. Letters, 58:606 (1987).ADSCrossRefGoogle Scholar
  24. 24.
    J. W. Allen, J. Magn. and Mag. Mat., 47–48:168 (1985).Google Scholar
  25. 25.
    A. Fujimori, E. Takayama-Muromachi, Y. Uchida and B. Okai, Phys. Rev., 1987, to be published.Google Scholar
  26. 26.
    Zhi-xun Shen, J.W. Allen, J.J. Yeh, J.-S. Kang, W. Ellis, W. Spicer, I. Lindau, M.B. Maple, Y.D. Dalichaouch, M.S. Torikachvili and J.Z. Sun, Phys. Rev. B, to be published.Google Scholar
  27. 27.
    M. R. Thuler, R. L. Benbow and Z. Hurych, Phys. Rev. B, 26:669 (1982).ADSCrossRefGoogle Scholar
  28. 28.
    S.-J. Oh, J.W. Allen, I. Lindau, and J.C. Mikkelsen, Jr., Phys. Rev. B, 26: 4845 (1982).ADSCrossRefGoogle Scholar
  29. 29.
    P. W. Anderson, Science, 235: 1196 (1987);ADSCrossRefGoogle Scholar
  30. 29a.
    P.W. Anderson, G. Baskaran, Z. Zou and T. Hsu, Phys. Rev. Letters, 58: 2790 (1987).ADSCrossRefGoogle Scholar
  31. 30.
    W. P. Ellis, R.C. Albers, J.W. Allen, Y. Lassailly, J.-S. Kang, B.B. Pate and I. Lindau, Solid State Commun., 62: 591 (1987).ADSCrossRefGoogle Scholar
  32. 31.
    J. Zaanen, G.A. Sawatzky and J.W. Allen, J. Magn. and Mag. Mat., 54–57: 607 (1986). Unpublished analysis shows that it is difficult to fit the core level spectra with the same parameters as for the PES-BIS spectra reported in this paper. Also the kink in the least binding energy valence band peak cannot be reproduced with the impurity theory.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. W. Allen
    • 1
  1. 1.Xerox Palo Alto Research CenterPalo AltoUSA

Personalised recommendations