• J. C. Fuggle
  • G. A. Sawatzky
  • J. W. Allen
Part of the NATO ASI Series book series (NSSB, volume 184)


For the context of this book, the term “high energy spectroscopy” implies spectroscopies involving photons and/or electrons with energies between 10 eV and 10 keV. The advances made in recent years in these spectroscopies, and especially in their interpretation, provided one of the main motivations for this meeting. We felt that the last years had witnessed something of a breakthrough in the use of high energy spectroscopies to study narrow band materials. Even though such spectroscopies have poor resolution and cause a large perturbation, they have in some cases given surprisingly detailed insight into the ground state electronic properties. Here we give a very short historical overview of progress in high energy spectroscopies.


Photoelectron Spectrum Core Level Electron Wave Function Core Hole Ionization Energies21 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review of early photoelectron spectroscopy, see J.G. Jenkin, R.C.G. Leckey and J. Liesegang, J. Electron Spectroscopy 12:1 (1977).CrossRefGoogle Scholar
  2. 2.
    For a review of early X-ray spectroscopy see A.H. Compton and S.K. Allison, in: “X-rays in Theory and Experiment”, Publ. van Nostrana, Princetown, (1935).Google Scholar
  3. 3.
    H.H. Johann, Z. f. Phys. 69:185 (1931);ADSCrossRefGoogle Scholar
  4. 3a.
    H.H. Johann, J. Johansson, Z. f. Phys. 82:507 (1933).CrossRefGoogle Scholar
  5. 4.
    See e.g. K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Begmark, S.-E. Karlsson, I. Lindgren, and B. Lindberg, in: “ESCA-Atomic, Molecular and Solid State Structure Studies by Means of Electron Spectroscopy”, Nova Acta Regiae Soc. Sci. Uppsaliensis 20, (1967);Google Scholar
  6. 4a.
    K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P.F. Hedén, K. Hamrin, U. Gelius, T. Bergmark, L.O. Werme, R. Manne and Y. Baer, in: “ESCA Applied to Free Molecules”, N. Holland, Amsterdam, (1971);Google Scholar
  7. 4b.
    K. Siegbahn, J. Electron Spectroscopy 5:1 (1974).CrossRefGoogle Scholar
  8. 5.
    P.W. Anderson, Phys. Rev. Lett. 18:1049 (1967);ADSCrossRefGoogle Scholar
  9. 5a.
    P.W. Anderson, Phys. Rev. 164:352 (1967).ADSCrossRefGoogle Scholar
  10. 6.
    G.D. Mahan, Phys. Rev. 163:612 (1967).ADSCrossRefGoogle Scholar
  11. 7.
    P. Nozieres and C.T. de Dominicis, Phys. Rev. 178:1097 (1969).ADSCrossRefGoogle Scholar
  12. 8.
    G.A. Ausman and A.J. Glick, Phys. Rev. 183:687 (1969).ADSCrossRefGoogle Scholar
  13. 9.
    S. Doniach and M. Sunjic, J. Phys. C3:285 (1970).Google Scholar
  14. 10.
    T.A. Carlson and M.O. Krause, Phys. Rev. 140:A1057 (1975);CrossRefGoogle Scholar
  15. 10a.
    T.A. Carlson, C.W. Nestor, Jr., T.C. Tucker and F.B. Malik, Phys. Rev. 169:27 91968).ADSCrossRefGoogle Scholar
  16. 11.
    B.I. Lundqvist, Phys. Kondens. Mater. 6:193 (1967).ADSCrossRefGoogle Scholar
  17. 12.
    R. Manne and T. Aberg, Chem. Phys. Lett. 7:283 (1970).ADSCrossRefGoogle Scholar
  18. 13.
    J.K. Lang, and Y. Baer, Rev. Sci. Instr. 50:221 (1979).ADSCrossRefGoogle Scholar
  19. 14.
    M. Cini, Solid State Commun. 24:681 (1977) andADSCrossRefGoogle Scholar
  20. 14a.
    M. Cini, Phys. Rev. B15:2788 (1978);ADSGoogle Scholar
  21. 14b.
    G.A. Sawatzky, Phys. Rev. Lett. 34:504 (1977).ADSCrossRefGoogle Scholar
  22. 15.
    P.A. Cox, J.K. Lang, and Y. Baer, J. Phys. F11:113, 121 (1981).ADSGoogle Scholar
  23. 16.
    A. Kotani and Y. Toyozawa, J. Phys. Soc. Japan 35:1073,1082 (1973);ADSGoogle Scholar
  24. 16a.
    A. Kotani and Y. Toyozawa,J. Phys. Soc. Japan 37:912 (1974).ADSCrossRefGoogle Scholar
  25. 17.
    K. Schönhammer and O. Gunnarsson, Solid State Commun. 23:691 (1977);ADSCrossRefGoogle Scholar
  26. 17a.
    K. Schönhammer and O. Gunnarsson, Solid State Commun. 26:147,399 (1978);ADSCrossRefGoogle Scholar
  27. 17b.
    J.C. Fuggle, M. Campagna, Z. Zolnierek, R. Lasser and A. Platau, Phys. Rev. Lett. 45:1597 (1980);ADSCrossRefGoogle Scholar
  28. 17c.
    O. Gunnarsson and K. Schönhammer, Phys. Rev. Lett. 50:604 (1983);ADSCrossRefGoogle Scholar
  29. 17c.
    O. Gunnarsson and K. Schönhammer, Phys. Rev. B27:4315 (1983).Google Scholar
  30. 18.
    J.W. Allen and R.M. Martin, Phys. Rev. Lett. 49:1106 (1982);ADSCrossRefGoogle Scholar
  31. 18a.
    J.W. Allen, S.J. Oh, O. Gunnarsson, K. Schönhammer, M.P. Maple, M.S. Torikachvili and I. Lindau, Adv. in Phys. 35:275 (1986) and references therein.ADSCrossRefGoogle Scholar
  32. 19.
    O. Gunnarsson, K. Schönhammer, J.C. Fuggle, F.U. Hillebrecht, J.-M. Esteva, R.C. Karnatak and B. Hillebrand, Phys. Rev. B28:7330 (1983).ADSGoogle Scholar
  33. 20.
    One speaks of complete breakdown of the one electron wave function when this factorization is not sensible. These cases are extremely interesting, but less relevant here.Google Scholar
  34. 21.
    J. Koopmans, Physica 1:104 (1933).ADSMATHCrossRefGoogle Scholar
  35. 22.
    see e.g. p ff in C. Kittel “Introduction to Solid State Physics”, (5th Edition, Publ. Wiley, New York, 1976).Google Scholar
  36. 23.
    H.J.W.M. Hoekstra, W. Speier, R. Zeller and J.C. Fuggle, Phys. Rev. B34:5177 (1986). Y. Baer and G. Busch, Phys. Rev. Lett. 30:280 (1973).ADSGoogle Scholar
  37. 24.
    J.C. Fuggle, p. 273in: “Laboratory Methods in Photoelectron Spectroscopy”, Ed. D. Briggs, Publ. Heyden, London (1978).Google Scholar
  38. 25.
    W. Speier, J.C. Fuggle, R. Zeller, B. Ackermann, K. Szat, F.U. Hillebrecht and M. Campagna, Phys. Rev. B 30:6921 (1984).ADSCrossRefGoogle Scholar
  39. 26.
    J.C. Fuggle, F.U. Hillebrecht, R. Zeller, Z. Zolnierek, P.A. Bennett and Ch. Freiburg, Phys. Rev. B27:2145 (1983) and references therein.ADSGoogle Scholar
  40. 27.
    W.E. Pickett, A.J. Freeman and D.D. Koelling, Phys. Rev. B23: 1266 (1981);ADSGoogle Scholar
  41. 27a.
    see also P. Podloucky and D. Glötzel ibid. 27:3390 (1983).ADSCrossRefGoogle Scholar
  42. 28.
    N. Mårtensson, B. Reihl and R.D. Parks, Solid State Commun. 41:573 (1983);CrossRefGoogle Scholar
  43. 28a.
    E. Wuilloud, H.R. Moser, W.-D. Schneider and Y. Baer, Phys. Rev. B28:7354 (1983);ADSGoogle Scholar
  44. 28b.
    F. Patthey, B. Delley, W.-D. Schnieder and Y. Baer, Phys. Rev. Lett. 55:1518 (1985).ADSCrossRefGoogle Scholar
  45. 29.
    W. Speier, J.C. Fuggle, P. Durham, R. Zeller, R.J. Blake and P. Sterne, J. Phys. C. (1988) in press.Google Scholar
  46. 30.
    W. Speier, R. Zeller and J.C. Fuggle, Phys. Rev. B32:3597 (1985).Google Scholar
  47. 31.
    V.L. Moruzzi, J.F. Janak and A.R. Williams, ”Calculated Electronic Properties of Metals, Pergamon Press, New York (1978).Google Scholar
  48. 32.
    Actually Ueff may be larger in Mn because of the large multiplet splittings in Mn d5 states.Google Scholar
  49. 33.
    These resonance phenomena are related to the Fano effect which produces strong variations in partial photoelectron cross sections near a core excitation threshold; U. Fano Phys. Rev. 124:1866 (1961). This effect is increasingly used in conjuction with photoemission induced by synchrotron radiation, to accentuate the spectral weight of a single site and symmetry selected contribution to the total density of (quasi-particle) states.ADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. C. Fuggle
    • 1
  • G. A. Sawatzky
    • 2
  • J. W. Allen
    • 3
  1. 1.University of NijmegenNijmegenThe Netherlands
  2. 2.University of GroningenGroningenThe Netherlands
  3. 3.The University of MichiganAnn ArborUSA

Personalised recommendations