Local Density Calculated Parameters for the Anderson Hamiltonian

  • A. K. McMahan
  • R. M. Martin
Part of the NATO ASI Series book series (NSSB, volume 184)


Local density functional theory has recently been used to provide first principles calculation of parameters entering the impurity Anderson Hamiltonian, with promising results. Examples are presented here for the case of the rare earth dioxides CeO2 and PrO2.


Coulomb Interaction Lawrence Livermore National Laboratory Hybridization Versus Matrix Element Versus Inverse Photoemission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.W. Allen, S.-J. Oh, O. Gunnarsson, K. Schönhammer, M.B. Maple, M.S. Torikachivili and I. Lindau, Adv. in Physics 35:275 91986).ADSCrossRefGoogle Scholar
  2. 2.
    J.W. Allen and R.M. Martin, Phys. Rev. Lett. 49:1106 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    M. Lavagna, C. Lacroix and M. Cyrot, Phys. Lett. 90A:210 (1982);ADSGoogle Scholar
  4. 3a.
    M. Lavagna, C. Lacroix and M. Cyrot, J. Phys. F13:1007 (1983).ADSCrossRefGoogle Scholar
  5. 4.
    R.M. Martin and J.W. Allen, J. Magn. and Magn. Mater. 47–48:257 91985).Google Scholar
  6. 5.
    L.C. Davis, J. Appl. Phys. 59:525 (1986).CrossRefGoogle Scholar
  7. 6.
    G. van der Laan, C. Westra, C. Haas and G.A. Sawatzky, Phys. Rev. B23:4369 (1981).ADSGoogle Scholar
  8. 7.
    G. van der Laan, Solid State Commun. 42:165 (1982).ADSCrossRefGoogle Scholar
  9. 8.
    G.A. Sawatzkyin: “Studies in Inorganic Chemistry”, Vol. 3 (Elsevier, Amsterdam, 1983), p.3.Google Scholar
  10. 9.
    A. Fujimori and F. Minamai, Phys. Rev. B30:957 (1984).ADSGoogle Scholar
  11. 10.
    G.A. Sawatzky and J.W. Allen, Phys. Rev. Lett. 53:2339 (1984).ADSCrossRefGoogle Scholar
  12. 11.
    J. Zaanen, G.A. Sawatzky and J.W. Allen, Phys. Rev. Lett. 55:418 (1985).ADSCrossRefGoogle Scholar
  13. 12.
    J. Zaanen, G.A. Sawatzky and J.W. Allen, J. Magn. and Mag. Mat. 54–57:607 (1986).Google Scholar
  14. 13.
    P.A. Lee, T.M. Rice, J.W. Serene, L.J. Sham and J.W. Wilkins, Comments Cond. Mat. Phys. 12:99 (1986).Google Scholar
  15. 14.
    O. Gunnarsson and K. Schönhammer, Phys. Rev. B28:4315 (1983).ADSGoogle Scholar
  16. 15.
    R.O. Jones and O. Gunnarsson, Phys. Rev. Lett. 55:107 (1985).ADSCrossRefGoogle Scholar
  17. 16.
    R. Ramirez and L.M. Falicov, Phys. Rev. B3:2425 (1971);ADSGoogle Scholar
  18. 16a.
    L.M. Falicov and J.C. Kimball, Phys. Rev. Lett. 22:997 (1967).ADSCrossRefGoogle Scholar
  19. 17.
    S.H. Liu and K.-M. Ho, Phys. Rev. B30:3039 (1984).ADSGoogle Scholar
  20. 18.
    F.D.M. Haldane, Phys. Rev. B15:2477 (1977).ADSGoogle Scholar
  21. 19.
    M.R. Norman, D.D. Koelling, A.J. Freeman, H.J.F. Jansen, B.I. Min, T. Oguchi, and L. Ye, Phys. Rev. Lett. 53: 1673 (1984).ADSCrossRefGoogle Scholar
  22. 20.
    M.R. Norman, D.D. Koelling and A.J. Freeman, Phys. Rev. B31:6251 (1985).ADSGoogle Scholar
  23. 21.
    M.R. Norman, Phys. Rev. B31:6261 (1985).ADSGoogle Scholar
  24. 22.
    B.I. Min, H.J.F. Jansen, T. Oguchi and A.J. Freeman, Phys. Rev. B33:8005 (1986).ADSGoogle Scholar
  25. 23.
    A. Zunger and A.J. Freeman, Phys. Rev. B16:2901 (1977).ADSGoogle Scholar
  26. 24.
    N.F. Mott and M.J. Littleton, Trans. Far. Soc. 34:485 (1938).CrossRefGoogle Scholar
  27. 25.
    R. Monnier, L. Degiorgi and D.D. Koelling, Phys. Rev. Lett. 56:2744 (1986).ADSCrossRefGoogle Scholar
  28. 26.
    L.L. Hirst, Phys. Rev. B15:l (1977).Google Scholar
  29. 27.
    D.D. Koelling, A.M. Boring and J.H. Wood, Solid State Commun.47:227 (1983).ADSCrossRefGoogle Scholar
  30. 28.
    A. Fujimori, Phys. Rev. B28:2281 (1983).ADSGoogle Scholar
  31. 29.
    A. Kotani, H. Mizuta and T. Jo, Solid State Commun. 53:805 (1985).ADSCrossRefGoogle Scholar
  32. 30.
    T. Jo and A. Kotani, Solid State Commun. 54:451 (1985).ADSCrossRefGoogle Scholar
  33. 31.
    E. Wuilloud, B. Delley, W.-D. Schneider and Y. Baer, Phys. Rev. Lett. 53:202 (1984).ADSCrossRefGoogle Scholar
  34. 32.
    J.W. Allen, J. Magn. and Mag. Mater. 47–48:168 (1985).Google Scholar
  35. 33.
    T. Hanyu, T. Muyahara, T. Kamada, H. Ishii, M. Yanagihara, H. Kato, K. Naito, S. Suzuki and T. Ishii, J. Magn. and Mag. Mater. 52:193 (1985).ADSCrossRefGoogle Scholar
  36. 34.
    Scalar relativistic, total energy, supercell calculations were used to obtain the term average ef of the spin-orbit/crystal field split level Efu, and U. The splittings were determined by separate calculation. The hybridization was calculated using Eq.(2) of Ref. 25, with matrix elements V obtained by an approximation Hq + V to O.K. Andersen’s second order Hamiltonian [Ref. 35], where Hg excludes coupling between RE-4f and other states by removing such coupling from the structure constants, and V is nonzero only between RE-4f and other states. These results are sufficient to provide |vμ(ε)|2 with fully relativistic symmetry index μ, given negligible spin-orbit splitting in the 0–2p band.Google Scholar
  37. 35.
    O.K. Andersen, Phys. Rev. B12:3060 (1975);ADSGoogle Scholar
  38. 35.
    O.K. Andersen, O. Jepsen and D. Glötzel, in: “Highlights of Condensed- Matter Theory”, LXXXIX Corso (Soc. Italiana di Fisica, Bologna, Italy, 1985).Google Scholar
  39. 36.
    H.L. Skriver, “The LMTO Method” (Springer, Berlin, 1984).CrossRefGoogle Scholar
  40. 37.
    L. Eyring, in: “Handbook on the Physics and Chemistry of Rare Earths”, edited by K.A. Gschneidner, Jr., and L. Eyring (North-Holland, Amsterdam, 1979), Chapter 27, Table 27.1Google Scholar
  41. 38.
    S. Kern, C.-K. Loong and G.H. Lander, Phys. Rev. B232:3051 (1985).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • A. K. McMahan
    • 1
  • R. M. Martin
    • 2
  1. 1.Lawrence Livermore National LaboratoryUniversity of CaliforniaLivermoreUSA
  2. 2.Xerox Palo Alto Research CenterPalo AltoUSA

Personalised recommendations