Advertisement

Model Hamiltonians and How to Determine their Parameters

  • K. Schönhammer
  • O. Gunnarsson
Part of the NATO ASI Series book series (NSSB, volume 184)

Abstract

It is straightforward to write down the Hamiltonian for the electrons in molecules or solids within the Born-Oppenheimer approximation for the nuclei. Unfortunately the resulting electronic many-body problem is notoriously hard to solve. The idea of mean field theory has therefore very early been used in attempts to perform reasonable calculations for the properties of atoms and molecules.1 In quantum chemistry a Hartree-Fock calculation is the usual starting point for configuration interaction (CI) calculations, which can yield very accurate results for small molecules. As this technique is not very well suited for solids, the Hohenberg-Kohn-Sham density functional theory (DFT) represented a major step forward.2 These authors showed that the calculation of ground state properties can be formally exactly reduced to a problem of non-interacting electrons in an effective potential veff.

Keywords

Spectral Function Core Level Spectrum Anderson Impurity Model Screen Mechanism Anderson Impurity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.R. Hartree, Proc. Canto. Phil. Soc. 24:89 (1928).ADSMATHCrossRefGoogle Scholar
  2. 2.
    P. Hohenberg and W. Kohn, Phys. Rev. 136.-B864 (1964);MathSciNetADSCrossRefGoogle Scholar
  3. 2a.
    W. Kohn and L.J. Sham, Phys. Rev. 140:A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  4. 3.
    U. von Barth and A.R. Williams, in “Theory of the Inhomogeneous Electron Gas”, Eds. S. Lundqvist and N.H. March (Plenum, New York, 1983).Google Scholar
  5. 4.
    L. Hedin, Phys. Rev. 139:A796 (1965).ADSCrossRefGoogle Scholar
  6. 5.
    P.W. Anderson, Phys. Rev. 124:41 (1961).MathSciNetADSCrossRefGoogle Scholar
  7. 6.
    A. Kotani and Y. Toyozawa, J. Phys. Soc. Japan 37:563 (1974).ADSCrossRefGoogle Scholar
  8. 7.
    K. Schönhammer and O. Gunnarsson, Solid State Commun. 23:691 (1977);ADSCrossRefGoogle Scholar
  9. 7a.
    K. Schönhammer and O. Gunnarsson, Solid State Commun. 26:399 (1978).ADSCrossRefGoogle Scholar
  10. 8.
    O. Gunnarsson and K. Schönhammer, Solid State Commun. 26:147 (1978);ADSCrossRefGoogle Scholar
  11. 8a.
    K. Schönhainmer and O. Gurmarsson, Z. Phys. B30:297 (1987).Google Scholar
  12. 9.
    K. Schönhainmer and O. Gunnarsson, Phys. Rev. B30:3141 (1984).ADSGoogle Scholar
  13. 10.
    O. Gunnarsson and K. Schönhammer, Phys. Rev. Lett. 50:604 (1963);CrossRefGoogle Scholar
  14. 10a.
    O. Gunnarsson and K. Schönhammer, Phys. Rev. B28:4315 (1983);ADSGoogle Scholar
  15. 10b.
    O. Gunnarsson and K. Schönhammer, Phys. Rev. B31:4815 (1985).ADSGoogle Scholar
  16. 11.
    S.H. Liu and K.-M. Ho, Phys. Rev. B26:7082 (1982);ADSGoogle Scholar
  17. 11a.
    S.H. Liu and K.-M. Ho, Phys. Rev. B28:4220 (1983).ADSGoogle Scholar
  18. 12.
    P.S. Riseborough, J. Magn. Magn. Mater. 47–48:271 (1985).CrossRefGoogle Scholar
  19. 13.
    J.W. Allen, S.J. Oh, O. Gunnarsson, K. Schönhammer, M.B. Maple, M.S. Torikachvili and I. Lindau, Adv. Phys. 35:275 (1986).ADSCrossRefGoogle Scholar
  20. 14.
    J.F. Herbst, R.E. Watson, and J.W. Wilkins, Phys. Rev. B17:3089 (1978);ADSGoogle Scholar
  21. 14a.
    J.F. Herbst and J.W. Wilkins, Phys. Rev. Lett. 43:1760 (1979).ADSCrossRefGoogle Scholar
  22. 15.
    O. Sakai, H. Takahashi, M. Takeshige, and T. Kasuya, Solid State Commun. 52:997 (1984).ADSCrossRefGoogle Scholar
  23. 15a.
    R. Monnier, L. Degiorgi, and D.D. Koelling, Phys. Rev. Lett. 56:2744 (1986). L. Degiorgi, T. Greber, F. Hulliger, R. Monnier, L. Schlapbach, and B.T. Thole, Europhysics Letter. ADSCrossRefGoogle Scholar
  24. 16.
    O. Gunnarsson and K. Schönhammer, Handbook on the Physics and Chemistry of Rare Earths (eds. K. Gschneider, L. Eyring and S. Hüfner), Vol. 10, North-Holland, Amsterdam (1986).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • K. Schönhammer
    • 1
  • O. Gunnarsson
    • 2
  1. 1.Institut für Theoretische PhysikUniversitat GöttingenGöttingenWest Germany
  2. 2.Max-Planck-Institut für FestkörperforschungStuttgart 80West Germany

Personalised recommendations