Advertisement

Introduction to the Book

  • J. C. Fuggle
  • G. A. Sawatzky
  • J. W. Allen
Part of the NATO ASI Series book series (NSSB, volume 184)

Abstract

The term “narrow band phenomena” is not absolutely defined but we can explain the field covered by this book as follows: the electrons in an atom or solid are in states characterized by a wave function and an energy level. These states are sub-divided into the valence levels, whose wave functions overlap in a compound, and the core levels, which are confined to the core regions of the atom. In narrow band materials there are partially filled states with characteristics between those of the localized core states and the (normally) delocalized and weakly correlated, valence states. For these systems a good understanding of the interesting physical properties requires a good, detailed determination of the electronic structure, which is not solely dominated by either band structure effects or by atomic correlations, but is strongly influenced by both.

Keywords

Fermi Level Narrow Band Magnetic Impurity Ground State Property Transition Metal Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.F. Mott, Proc. Phys. Soc. London A62:416 (1949).ADSGoogle Scholar
  2. 2.
    N.F. Mott, in: “Metal-Insulator Transitions”, Taylor and Francis, London (1974).Google Scholar
  3. 3.
    J.A. Wilson, Advances in Physics 21:143 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    J.B. Goodenough “Magnetism and the Chemical Bond”, Interscience, New York (1963).Google Scholar
  5. 5.
    J. Hubbard, Proc. Roy. Soc. London, 276:238 (1963);ADSCrossRefGoogle Scholar
  6. 5a.
    J. Hubbard, Proc. Roy. Soc. London, 277:237 (1964);ADSCrossRefGoogle Scholar
  7. 5b.
    J. Hubbard, Proc. Roy. Soc. London, 281:404 (1964).ADSGoogle Scholar
  8. 6.
    C. Herring in: “Magnetism” (eds G.T. Rado and H. Suhl), Academic Press, London (1966).Google Scholar
  9. 7.
    P.W. Anderson, Phys. Rev. 124:41 (1961).MathSciNetADSCrossRefGoogle Scholar
  10. 8.
    J. Kondo, Prog. Theoret. Phys. 32:37 (1964);ADSCrossRefGoogle Scholar
  11. 8a.
    J. Kondo, Solid State Physics, Vol. 23, ed. F. Seitz and D. Turnbull, Academic Press, New York, (1969).Google Scholar
  12. 9.
    See e.g. C. Kittel, Solid State Physics 22:1 (1968).CrossRefGoogle Scholar
  13. 10.
    G.A. Sawatzky, W. Geertsma, and C. Haas, J. Mag. Mag. Mat. 3:37 (1976).ADSCrossRefGoogle Scholar
  14. 11.
    For a collection of articles on magnetic polarons, see J. Magn. Mag. Mater. 54–7:pl207ff (1985).Google Scholar
  15. 12.
    See e.g. Proceedings 1975 Discussion Meetings on magnetic Semiconductors, Ed. W. Zinn, N. Holland, Amsterdam 1976.Google Scholar
  16. 13.
    “Moment Formation in Solid”, Ed. W. Buyers, Plenum, New York, 1984.Google Scholar
  17. 14.
    Valence Fluctuations 1985, Ed. E. Müller Hartmann, B. Roden and D. Wohlleben, J. Magn. Mag. Mater. 47–48:163 (1985).Google Scholar
  18. 15.
    C.M. Varma, Rev. Mod. Phys. 48:219 (1976).ADSCrossRefGoogle Scholar
  19. 16.
    See e.g. W. Meissner and B. Voigt, Ann. Phys. 7:761, 892 (1930);Google Scholar
  20. 16a.
    A.N. Gerritsen and J.O. Linde, Physica (Utrecht) 17:573 (1951);ADSCrossRefGoogle Scholar
  21. 16b.
    A.N. Gerritsen and J.O. Linde, Physica (Utrecht) 18:877 (1951).ADSCrossRefGoogle Scholar
  22. 17.
    M. D. Daybell and W.A. Steyert, Rev. Mod. Phys. 40:380 (1968).ADSCrossRefGoogle Scholar
  23. 18.
    F. Steglich, J. Aerts, C.D. Bredl, W. Lieke, D. Meschede, W. Franz and H. Schäfer, Phys. Rev. Lett. 43:1892 (1972).ADSCrossRefGoogle Scholar
  24. 19.
    G.R. Stewart, Rev. Mod. Phys. 56:755 (1984).ADSCrossRefGoogle Scholar
  25. 20.
    N.F. Mott, Nobel prize Address, Rev. Mod. Phys. 50:203 (1978);ADSCrossRefGoogle Scholar
  26. 20a.
    P.W. Anderson, Nobel prize Address, Rev. Mod. Phys. 50:191 (1978).ADSCrossRefGoogle Scholar
  27. 21.
    P.A. Cox in:”The Electronic Structure and Chemistry of Solids”, (Oxford Science Publ. Oxford, 1986).Google Scholar
  28. 22.
    N.W. Ashcroft and N.D. Mermin, p3 in: “Solid State Physics” (Publ. Holt, Rinehart and Winston, New York, 1976).Google Scholar
  29. 23.
    C. Kittel in: “Introduction to Solid State Physics” (6th edition) Wiley, New York, (1976).Google Scholar
  30. 24.
    E. Jensen and E.W. Plummer, Phys. Rev. Lett. 55:1912 (1985);ADSCrossRefGoogle Scholar
  31. 24a.
    E.W. Plummer, Physica Scripta T17:186 (1986) and references therein.ADSCrossRefGoogle Scholar
  32. 25.
    C.F. Fischer, “The Hartree-Fock Method for Atoms”, J. Wiley, New York, (1977).Google Scholar
  33. 26.
    J.M. Fournier and L. Manes, in: “Structure and Bonding” 59/60:3, 80 (1985).Google Scholar
  34. 27.
    J.P. Desclaux, Atomic and Nucl. Data tables 12:310 (1973).ADSGoogle Scholar
  35. 28.
    D. van der Marel, Ph.D. thesis, Groningen University (1985).Google Scholar
  36. 29.
    “The Handbook of Chemistry and Physics”, Ed. C. Weast, (publ. CRC press, Cleveland, 1975).Google Scholar
  37. 30.
    A.H. Wilson, Proc. Roy. Soc. A133:458 (1931);ADSGoogle Scholar
  38. 30a.
    A.H. Wilson, Proc. Roy. Soc. 134:277 (1931).ADSMATHCrossRefGoogle Scholar
  39. 31.
    J.A. Wilson, p.215 in: “The Metallic and Non-Metallic States of Matter”, ed. P.P. Edwards and C.N.R. Rao. Taylor and Francis (London 1985).Google Scholar
  40. 32.
    See e.g. J. Zaanen, G.A. Sawatzky and J.W. Allen, Phys. Rev. Lett. 55:418 (1985).ADSCrossRefGoogle Scholar
  41. 33.
    The concepts of “valence” and “valency”, which still lead to some confusion, have interesting histories. The words themselves started to come into general use around 1870, thanks mostly to the work of Kekulé, (see, e.g., F.A. Kekulé, Z. Chem. 3:217 (1867));Google Scholar
  42. 33a.
    C.A. Russel, “The History of the Concept of Valency”, (Leicester University Press, 1971), although the ideas from which they were generated are usually traced back to Dalton’s atomic theories and the law of constant, or rational, proportions.Google Scholar
  43. 33b.
    (J. Dalton, “A New System of Chemical Philosophy”, Vol. 1, 1808, Cited by W.G. Palmer, “A History of the Concept of Valency to 1930”, Cambridge University Press 1965). The period before 1870 was characterised by a great deal of confusion, although some interesting formulations of chemical structure and bonding were made.Google Scholar
  44. 33c.
    One of these was E. Frankland’s (Phil. Trans. 142:440 (1852)) concept of an atom’s “combining power” to explain the stoichiometry of inorganic and simple organic compounds. All of these developments, of course, preceeded the development of an electronic theory of bonding. The present-day uses of the terms valence contain a mixture of the historical and the modern ideas. There are now four main usages, which can be a source of some confusion. Valency can be used in connection with the stoichiometry of a compound (i.e. the number of hydrogen atoms, or twice the number of oxygen atoms, which an atom of an element can replace, or with which it can combine). This is the use most closely related to the ideas of Kekulé. Secondly, valence is used in the general sense of chemical linking of atoms. Thirdly, there is a colloquial use to describe the actual links, or bonds in a molecule. Finally, there is a use, particularly among solid state physicists, meaning the number of electrons from an atom which contribute to the bonding (e.g. Sm and Yb are mixed valent in SmSxSe1-x and YbAl2 respectively). This last usage has a superficial similarity to the atom combining power of Frankland.Google Scholar
  45. 34.
    See e.g. C.M. Varma, Rev. Mod. Phys. 48:219 (1976).ADSCrossRefGoogle Scholar
  46. 35.
    See e.g. F.A. Cotton and G. Wilkinson AA in: “Advanced Inorganic Chemistry”, J. Wiley (1962).Google Scholar
  47. 36.
    D.R. Gustaffsson, J.D. McNutt and L.O. Roellig, Phys. Rev. 183:435 (1969).ADSCrossRefGoogle Scholar
  48. 37.
    B. Johansson, Philos. Mag. 30:469 (1974).ADSCrossRefGoogle Scholar
  49. 38.
    O. Gunnarsson and K. Schönhammer, Phys. Rev. Lett. 50:604 (1983),ADSCrossRefGoogle Scholar
  50. 38a.
    O. Gunnarsson and K. Schönhammer, Phys. Rev. B28:.4315 (1983);Google Scholar
  51. 38b.
    O. Gunnarsson and K. Schönhammer, 31:4815 (1985).Google Scholar
  52. 39.
    J.W. Wilkins, Physics Today, 39-.S22 (1986).CrossRefGoogle Scholar
  53. 40.
    W. Meissner and B. Voigt, Ann. Phys. 7:761, 892 (1930).CrossRefGoogle Scholar
  54. 41.
    J.P. Franck, F.D. Manchester and D.L. Martin, Proc. Roy. Soc. (London) A263:494 (1961).ADSGoogle Scholar
  55. 42.
    R. M. Martin and J.W. Allen, J. Magn. Magn. Mater. 37–38:257 (1985).Google Scholar
  56. 43.
    Z. Fisk, H.R. Ott, T.M. Rice and J.L. Smith, Nature 320:124 (1986).ADSCrossRefGoogle Scholar
  57. 44.
    J.K. Lang, Y. Baer and P.A. Cox, J. Phys. F. 11:121 (1981).ADSCrossRefGoogle Scholar
  58. 45.
    J.L. Smith and E.A. Kmetko, J. Less. Common Metals, 90:83 (1983).CrossRefGoogle Scholar
  59. 46.
    A.W. Overhauser, Adv. Phys. 27:243 (1978);CrossRefGoogle Scholar
  60. 46.
    A.W. Overhauser, Phys. Rev. Lett. 55:1916 (1985) and references therein.ADSCrossRefGoogle Scholar
  61. 47.
    W.A. Harrison, in: “Electronic Structure and the Properties of Solids”, Freeman, San Francisco, (1980).Google Scholar
  62. 48.
    W.A. Harrison, Phys. Rev. B28:550 (1983).ADSGoogle Scholar
  63. 49.
    H.J. de Boer and E.J.W. Verwey, Proc. Phys. Soc. A49:59 (1937).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. C. Fuggle
    • 1
  • G. A. Sawatzky
    • 2
  • J. W. Allen
    • 3
  1. 1.University of NijmegenNijmegenThe Netherlands
  2. 2.University of GroningenGroningenThe Netherlands
  3. 3.The University of MichiganAnn ArborUSA

Personalised recommendations