Anatomical and Neurochemical Substrates of Clonic and Tonic Seizures

  • Karen Gale
  • Ronald A. Browning


Rather than spreading randomly throughout the brain, convulsive seizure activity appears to be generated and propagated via specific anatomical routes. During the past fifty years, a broad range of experimental techniques have been applied to the study of cortical and subcortical circuitry involved in seizure development and spread. With respect to subcortical circuitry, substrates for seizure propagation were actively pursued during the 1950s but these investigations subsequently lost momentum, nearly disappearing until a few years ago. In the interim, technologies directed at molecular and cellular mechanisms of epileptogenesis have fostered a predominantly cortical perspective in epilepsy research (broadened today to include both neocortex and the archicortex of hippocampus). Along with this focus on cortical mechanisms has emerged an analysis of epileptiform activity using in vitro preparations of tissues isolated from the complex circuitry of the CNS in vivo. It has been in such isolated preparations that basic mechanisms of action of selective neuropharmacological agents have been best characterized. In contrast, little attention has been directed at seizure propagation pathways beyond the level of the interneuron and there have been relatively few studies designed to identify the subcortical pathways which function as substrates of convulsant or anticonvulsant drug action.


Substantia Nigra Kainic Acid Audiogenic Seizure Maximal Electroshock Seizure Tonic Seizure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackerman, R., Moshe, S., Albala, B., Engel, J. Jr. Anatomical substrates of amygdala kindling in immature rats demonstrated by 2-deoxyglucose autoradiography. Epilepsia 23: 494–495, 1982.Google Scholar
  2. 2.
    Adler, M. Laboratory evaluation of antiepileptic drugs. The use of chronic lesions. Epilepsia 10: 263–280, 1969.PubMedGoogle Scholar
  3. 3.
    Adler, M. Lowered thresholds to flurothyl seizures after lateral geniculate lesions in rats. Int. J. Neuropharmacol. 8: 393–398, 1969.Google Scholar
  4. 4.
    Adler, M. The effect of single and multiple lesions of the limbic system on cerebral excitability. Psychopharmacologia 24: 218–230, 1972.PubMedGoogle Scholar
  5. 5.
    Albala, B., Moshe, S., Cubells, J., Sharpless, N., Makman, M. Unilateral perisubstantia nigra catecholaminergic lesion and amygdala kindling. Brain Res. 370: 388–392, 1986.PubMedGoogle Scholar
  6. 6.
    Albala, B., Moshe, S., Okada, R. Kainic acid induced seizures: a developmental study. Dev. Brain Res. 13: 139–148, 1984.Google Scholar
  7. 7.
    Amato, G., Crescimmano, G., Sorbera, F., LaGrutta, V. Relationship between the striatal system and amygdaloid paroxysmal activity. Exp. Neurol. 77: 492–504, 1982.PubMedGoogle Scholar
  8. 8.
    Araki, H., Aihara, H., Watanabe, S., Yamamoto, T., Ueki, S. Role of the amygdala in the hippocampal kindling effect of rats. Jap. J. Pharmacol. 37: 173–179, 1985.Google Scholar
  9. 9.
    Araki, Y. and Ueki, S. Changes in sensitivity to convulsion in mice with olfactory bulb ablation. Jap. J. Pharmacol. 22: 447–452, 1972.PubMedGoogle Scholar
  10. 10.
    Arnt, J. and Scheel-Kruger, J. Intranigral GABA antagonists produce dopamine-independent biting in rats. Eur. J. Pharmacol. 62: 51–61, 1980.Google Scholar
  11. 11.
    Asuad, J. Contribution a ‘l’etude de l’epilepsie experimentale chez les animaux decrebres, mesencephaliques, protuberantiels, bulbaires et spinaux. Pr. med. 48: 1043–1047, 1940.Google Scholar
  12. 12.
    Bagioni, S. and Magnini, M. Azione di alcune sostanze chimiche sulle zone eccitabili della corteccia cedrebrale del cane. Arch. Fisiol. 6: 240–249, 1909.Google Scholar
  13. 13.
    Baker, W. and Benedict, F. Analysis of local discharges induced by intrahippocampal microinjection of carbachol or diisopropylfluorophosphate (DFP). Int. J. Neuropharmacol. 7: 135–147, 1968.PubMedGoogle Scholar
  14. 14.
    Ben-Ari, Y., Tremblay, E., Riche, D., Ghilini, G., Naquet, R. Electrographic clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: metabolic mapping using the 2-DG method with special reference to the pathology of epilepsy. Neurosci. 6: 1361–1391, 1981.Google Scholar
  15. 15.
    Ben-Ari, Y., Tremblay, E., Ottersen, O. Injections of kainic acid into the amygdaloid complex of the rat: An electrographic, clinical and histological study in relation to the pathology of epilepsy. Neuroscience 5: 515–528, 1980.PubMedGoogle Scholar
  16. 16.
    Ben-Ari, Y., Tremblay, E., Otterson, O., Meldrum, B. The role of epileptic activity in hippocampal and ‘remote’ cerebral lesions induced by kainic acid. Brain Res. 191: 79–97, 1980.PubMedGoogle Scholar
  17. 17.
    Bergmann, F., Costin, A., Gutman, J. A low threshold convulsive area in the rabbit mesencephalon. Electroencephalogr. Clin. Neurophysiol. 15: 683–690, 1963.PubMedGoogle Scholar
  18. 18.
    Browning, R. Role of the brainstem reticular formation in tonic-clonic seizures: Lesion and pharmacological studies. Fed. Proc. 44: 2425–2431, 1985.PubMedGoogle Scholar
  19. 19.
    Browning, R. Neuroanatomical localization of structures responsible seizures in the GEPR: Lesion studies. Life Sci. 39: 857–867, 1986.PubMedGoogle Scholar
  20. 20.
    Browning, R., Turner, F., Simonton, R., Bundman, M. Effect of midbrain and pontine tegmental lesions on the maximal electroshock seizure pattern in rats. Epilepsia 22: 583–594, 1981.PubMedGoogle Scholar
  21. 21.
    Browning, R., Simonton, R., Turner, F. Antagonism of experimentally-induced tonic seizures following a lesion of the midbrain tegmentum. Epilepsia 22: 595–601, 1981.PubMedGoogle Scholar
  22. 22.
    Browning, R. and Nelson, D. Variation in threshold and pattern of electroshock-induced seizures in rats depending on site of stimulation. Life Sci. 37: 2205–2211, 1985.PubMedGoogle Scholar
  23. 23.
    Browning, R., Nelson, D., Mogharreban, N., Jobe, P., Laird, H. Effect of midbrain and pontine tegmental lesions of audiogenic seizures in genetically epilepsy-prone rats. Epilepsia 26: 175–183, 1985.PubMedGoogle Scholar
  24. 24.
    Browning, R. and Nelson, D. Modification of electroshock and PTZ seizure patterns in rats after precollicular transections. Exp. Neurol. 93: 546–556. 1986.PubMedGoogle Scholar
  25. 25.
    Browning, R. The role of neurotransmitters in electroshock seizure models. In: Neurotransmitters and Epilepsy, P. Jobe and H. Laird (eds). New Jersey: Humana Press, 1987.Google Scholar
  26. 26.
    Burnham, W., Albright, P., Schneiderman, J., Chiu, P., Ninchoji, T. Centrencephalic mechanisms in the kindling model. In: Kindling 2, J. Wada (ed). New York: Raven Press, pp. 161–178, 1981.Google Scholar
  27. 27.
    Burnham, W. Core mechanisms in generalized convulsions. Fed. Proc. 44: 2442–2445, 1985.Google Scholar
  28. 28.
    Cain, D. Seizure development following repeated electrical stimulation of central olfactory structures. Ann. N.Y. Acad. Sci. 290: 200–216, 1977.Google Scholar
  29. 29.
    Cavalheiro, E. and Turski, L. Intrastriatal N-methyl-D-aspartate prevents amygdala kindled seizures in rats. Brain Res. 377: 173–176, 1986.PubMedGoogle Scholar
  30. 30.
    Childs, J. and Gale, K. Neurochemical evidence for a nigrotegmental Gabaergic projection. Brain Res. 258: 109–114, 1983.PubMedGoogle Scholar
  31. 31.
    Collingridge, G. and Davies, J. Actions of substance P and opiates in the rat substantia nigra. Neuropharmacology 21: 715–719, 1982.PubMedGoogle Scholar
  32. 32.
    Corcoran, M. and Mason, S. Role of forebrain catecholamines in amygdaloid kindling. Brain Res. 190: 473–484, 1980.PubMedGoogle Scholar
  33. 33.
    Corcoran, M., Urstad, H., McCaughran, J. Jr., Wada, J. Frontal lobe kindling in the rat. Can J. Neurol. Sci. 2: 501–508, 1975.Google Scholar
  34. 34.
    Dasheiff, R. and McNamara, J. Intradentate colchicine retards the development of amygdala kindling. Ann. Neurol. 11: 347–352, 1981.Google Scholar
  35. 35.
    DeSarro, G., Meldrum, B., Reavill, C. Anticonvulsant action of 2-amino-7-phosphonoheptanoic acid in the substantia nigra. Eur. J. Pharmacol. 106: 175–179, 1985.Google Scholar
  36. 36.
    DiChiara, G., Porceddu, M., Morelli, M., Mulas, M., Gessa, G. Evidence for a GABAergic projection from the substantia nigra to the ventromedial thalamus and to the superior colliculus of the rat. Brain Res. 176: 273–284, 1979.Google Scholar
  37. 37.
    Dow, R. Extrinsic regulatory mechanisms of seizure activity. Epilepsia 6: 122–140, 1965.PubMedGoogle Scholar
  38. 38.
    Dow, R., Fernandez-Guariola, A., Manni, E. The influence of the cerebellum on experimental epilepsy. Electroencephalogr. Clin. Neurophysiol. 14: 383–398, 1962.PubMedGoogle Scholar
  39. 39.
    Drake, C., Seguin, J., Stavraky, G. Effects of convulsant agents on partially isolated regions of the central nervous system. Can. J. Biochem. Physio. 34: 689–712, 1965.Google Scholar
  40. 40.
    Ehlers, C. and Koob, G. Locomotor behavior following kindling in three different brain sites. Brain Res. 326: 71–79, 1985.PubMedGoogle Scholar
  41. 41.
    Engel, J. and Katzman, R. Facilitation of amygdaloid kindling by lesions of the stria terminalis. Brain Res. 122: 137–142, 1977.PubMedGoogle Scholar
  42. 42.
    Engel, J. Jr., Wolfson, L., Brown, L. Anatomical correlates of electrical and behavioral events related to amygdala kindling. Ann. Neurol. 3: 538–544, 1978.PubMedGoogle Scholar
  43. 43.
    Faingold, C., Hoffman, W., Caspary, D. Mechanisms of sensory seizures: Brain-stem neuronal response changes and convulsant drugs. Fed. Proc. 44: 2436–2441, 1985.PubMedGoogle Scholar
  44. 44.
    Fariello, R. Forebrain influences on an amygdaloid acute focus in the cat. Exp. Neurol. 51: 515–528, 1976.PubMedGoogle Scholar
  45. 45.
    Fariello, R. and Hornykiewicz, O. Substantia nigra and pentylenetetrazol threshold in rats: correlation with striatal dopamine metabolism. Exp. Neurol. 65: 202–208, 1979.PubMedGoogle Scholar
  46. 46.
    Feeney, D. and Gullotta, F. Suppression of seizure discharge and sleep spindles by lesions of the rostral thalamus. Brain Res. 45: 254–259, 1972.PubMedGoogle Scholar
  47. 47.
    Fromm, G. Effects of different classes of antiepileptic drugs on brain-stem pathways. Fed. Proc. 44: 2432–2435, 1985.PubMedGoogle Scholar
  48. 48.
    Frush, D., Giacchino, J., McNamara, J. Evidence implicating dentate granule cells in development of entorhinal kindling. Exp. Neurol. 92: 92–101, 1986.PubMedGoogle Scholar
  49. 49.
    Frye, G., McCown, T., Breese, G. Characterization of susceptibility to audiogenic seizures in ethanol-dependent rats after microinjection of GABA agonists into the inferior colliculus, substantia nigra or medial septum. J. Pharmacol. Exp. Therap. 227: 663–670; 1983.Google Scholar
  50. 50.
    Gabreels, F. De involed van phenytoine op de Purkinje-cell van de rat. Doctoral dissertation. Catholic University of the Netherlands, Nijmegen, 1972.Google Scholar
  51. 51.
    Gale, K. Mechanisms of seizure control mediated by gamma-aminobutyric acid: Role of the substantia nigra. Fed. Proc 44: 2414–2424, 1985.PubMedGoogle Scholar
  52. 52.
    Gale, K. and Iadarola, M. Seizure protection and increased nerve terminal GABA: Delayed effects of GABA transaminase inhibition. Science 208: 288–291, 1980.PubMedGoogle Scholar
  53. 53.
    Garant, D. and Gale, K. Lesions of substantia nigra protect against experimentally-induced seizures. Brain Res. 273: 156–161, 1983.PubMedGoogle Scholar
  54. 54.
    Garant, D. and Gale, K. Infusion of opiates into substantia nigra protects against maximal electroshock seizures in rats. J. Pharmacol. Exp. Ther. 234: 45–48, 1985.Google Scholar
  55. 55.
    Garant, D. and Gale, K. Intranigral muscimol attenuates electrographic signs of seizure activity induced by intravenous bicuculline in rats. Eur. J. Pharmacol. 124: 365–369, 1986.PubMedGoogle Scholar
  56. 56.
    Garant, D., Iadarola, M., Gale, K. Substance P antagonists in substantia nigra are anticonvulsant. Brain Res. 382: 372–378, 1986.PubMedGoogle Scholar
  57. 57.
    Garant, D. and Gale, K. Substantia nigra-mediated anticonvulsant actions: Role of nigral output pathways. Exp. Neurol. 97: 143–159, 1987.PubMedGoogle Scholar
  58. 58.
    Goddard, G., McIntyre, D., Leech, C. A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol. 25: 295–330, 1969.PubMedGoogle Scholar
  59. 59.
    Gonzalez, L. and Hettinger, M. Intranigral muscimol suppresses ethanol withdrawal seizures. Brain Res. 298: 163–166, 1984.PubMedGoogle Scholar
  60. 60.
    Green, J., Clemente, C., deGroot, J. Experimentally induced epilepsy in the cat with injury of cornu ammonis. Arch. Neurol. Psychiat. 78: 259–263, 1957.Google Scholar
  61. 61.
    Grossman, S. Chemically induced epileptiform seizures in the cat. Science 142: 409–410, 1963.PubMedGoogle Scholar
  62. 62.
    Gunne, L., Bachus, S., Gale, K. Oral movements induced by interference with nigral GABA neurotransmission: Relationship to Tardive dyskinesias. Exp. Neurol. 100: 459–469, 1988.PubMedGoogle Scholar
  63. 63.
    Haberly, L. and Price, J. Association and commissural fiber system of the olfactory cortex of the rat. J. Comp. Neurol. 178: 11–790, 1978.Google Scholar
  64. 64.
    Hayashi, T. Neurophysiology and Neurochemistry of Convulsion. DairihonTosho, Tokyo, 1959.Google Scholar
  65. 65.
    Hayashi, T. The inhibitory action of B-hydroxy-gamma-aminobutyric acid upon the seizure following stimulation of the motor cortex of the dog. J. Physiol. 145: 570–578, 1959.PubMedGoogle Scholar
  66. 66.
    Iadarola, M. and Gale, K. Substantia nigra: Site of anticonvulsant activity mediated by gamma-aminobutyric acid. Science 218: 1237–1240, 1982.PubMedGoogle Scholar
  67. 67.
    Jinnai, D. Clinical results and the significance of Forel-H-tomy in the treatment of epilepsy. Confin. Neurol. 27: 129–136, 1966.PubMedGoogle Scholar
  68. 68.
    Jinnai, D., Mogami, H., Mukawa, J., Iwata, Y., Kobayashi, K. Effect of brain-stem lesions on Metrazol-induced seizures in cats. Electroencephalogr. and Clin. Neurophysiol. 27: 404–411, 1969.Google Scholar
  69. 69.
    Julien, M. and Halpern, L. Effects of diphenylhydantoin and other antiepileptic drugs on epileptiform activity and Purkinje cell discharge rates. Epilepsia 13: 387–400, 1972.PubMedGoogle Scholar
  70. 70.
    Kaneko, Y., Wada, J., Kimura, H. Is the amygdaloid neuron necessary for amygdaloid kindling? In: Kindling 2, J. Wada (ed). New York: Raven Press, pp. 249–264, 1981.Google Scholar
  71. 71.
    Kesner, R. Subcortical mechanisms of audiogenic seizures. Exp. Neurol. 15: 192–205, 1966.PubMedGoogle Scholar
  72. 72.
    Kilpatrick, I., Starr, M., Fletcher, A., James, T., MacLeod, N. Evidence for a GABAergic nigrothalamic pathway in the rat. Behavioral and Biochemical Studies. Exp. Brain Res. 40: 45–54, 1980PubMedGoogle Scholar
  73. 73.
    Kim, C. and Kim, C.U. Effect of hippocampal ablation on audiogenic seizures in rats. J. Comp. Physiol. Psychol. 55: 288–292, 1962.PubMedGoogle Scholar
  74. 74.
    Kirkby, R. Effects of lesions of the caudate nucleus or frontal neocortex on drug-induced seizures in the rat. Physiol. Psych. 5: 359–363, 1977.Google Scholar
  75. 75.
    Kovacs, D. and Zoll, J. Seizure inhibition by median raphe nucleus stimulation in the rat. Brain Res. 70: 165–169, 1974.PubMedGoogle Scholar
  76. 76.
    Krall, R., Penry, J., White, B., Kupferberg, H., Swinyard, E. Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia 19: 409–428, 1978.Google Scholar
  77. 77.
    Kreindler, A., Zuckermann, E., Steriade, M., Chimion, J. Electroclinical features of convulsions induced by stimulation of brain stem. J Neurophysiol. 21: 430–436, 1958.PubMedGoogle Scholar
  78. 78.
    Kusske, J., Ojemann, G., Ward, A. Effects of lesions in ventral anterior thalamus on experimental focal epilepsy. Exp. Neurol. 34: 279–290, 1972.PubMedGoogle Scholar
  79. 79.
    La Grutta, V., Sabatino, M., Ferraro, G., Liberti, G., La Grutta, G. Modulation of paroxysmal activity in the hippocampus by caudate stimulation in the chronic cat. Neurosci. Lett. 67: 251–256, 1986.PubMedGoogle Scholar
  80. 80.
    Le Gal La Salle, G. Kindling of motor seizures from the bed nucleus of the stria terminalis. Exp. Neurol. 66: 309–318, 1979.Google Scholar
  81. 81.
    Le Gal La Salle, G., Kijima, M., Feldblum S. Abortive amygdaloid kindled seizures following microinjection of gamma-vinyl-GABA in the vicinity of substantia nigra in rats. Neurosci. Lett. 36: 69–74, 1983.Google Scholar
  82. 82.
    Loscher, W. and Schwark, W. Evidence for impaired GABAergic activity in the substantia nigra of amygdaloid kindled rats. Brain Res. 339: 146–150, 1985.PubMedGoogle Scholar
  83. 83.
    Lothman, E., Hatlelid, J., Zorumski, C. Functional mapping of limbic seizures originating in the hippocampus: A combined 2-deoxyglucose and electrophysiologic study. Brain Res. 360: 92–100, 1985.Google Scholar
  84. 84.
    Maiti, A. and Snider, R. Cerebellar control of basal forebrain seizures: Amygdala and hippocampus. Epilepsia 6: 521–533, 1975.Google Scholar
  85. 85.
    Mason, C. and Cooper, R. A permanent change in convulsive threshold normal and brain damaged rats with repeated small doses of pentylenetetrazol. Epilepsia 13: 663–674, 1972.PubMedGoogle Scholar
  86. 86.
    Mason, S. and Corcoran, M. Forebrain noradrenaline and metrazol-induced seizures. Life Sci. 23: 167–172, 1978.PubMedGoogle Scholar
  87. 87.
    Maynert, E., Marczynski, T., Browning, R. The role of neuro-transmitters in the epilepsies. Adv. Neurology 13: 79–147, 1975.Google Scholar
  88. 88.
    McCaughran, J., Corcoran, M., Wada, J. Role of nonspecific thalamus in amygdala kindling. Exp. Neurol. 58: 471–485, 1978.PubMedGoogle Scholar
  89. 89.
    McIntyre D., Stuckey, G., Stokes, K. Effects of amygdala lesions on dorsal hippocampus kindling in rats. Exp. Neurol. 75: 184–190, 1982.PubMedGoogle Scholar
  90. 90.
    McKenzie, F., Sequin, J., Stavraky, G. Effects of frontal lobectomy upon electrically induced convulsions and electronarcosis. Arch. Neurol. 2: 55–61, 1960.Google Scholar
  91. 91.
    McNamara, J., Galloway, M., Rigsbee, L., Shin, C. Evidence implicating substantia nigra in regulation of kindled seizure threshold. J. Neurosci. 4: 2410–2417, 1984.PubMedGoogle Scholar
  92. 92.
    Meldrum, B. Epilepsy and gamma-aminobutyric acid-mediated inhibition. C. Pfeiffer and J. Smythies (eds). International Rev. of Neurobiology. New York: Academic Press, p. 1, 1975.Google Scholar
  93. 93.
    Melis, M. and Gale, K. Effect of dopamine agonists on GABA turnover in the superior colliculus: Evidence that nigrotectal Gabaergic projections are under the influence of dopaminergic transmission. J. Pharmacol. Exp. Therap. 226: 425–431, 1983.Google Scholar
  94. 94.
    Millan, M., Meldrum, B., Boersma, C., Faingold, C. Excitant amino acids and audiogenic seizures in the genetically epilepsy-prone rat. II. Efferent seizure propagating pathway. Exp. Neurol. 99: 687–698, 1988.PubMedGoogle Scholar
  95. 95.
    Millan, M., Patel, S., Meldrum, B. Olfactory bulbectomy protects against pilocarpine-induced motor limbic seizures in rats. Brain Res. 398: 204–206, 1986.PubMedGoogle Scholar
  96. 96.
    Millan, M., Patel, S., Mello, L., Meldrum, B. Focal injection of 2-amino-7-phosphonoheptanoic acid into prepiriform cortex protects against pilocarpine-induced limbic seizures in rats. Neurosci. Lett. 70: 69–74, 1986.PubMedGoogle Scholar
  97. 97.
    Mirski, M. and Ferrendelli, J. Interruption of the mammillothalamic tract prevents seizures in guinea pigs. Science 226: 72–74, 1984.PubMedGoogle Scholar
  98. 98.
    Mirski, M. and Ferrendelli, J. Selective metabolic activation of the mammillary bodies and their connections during ethosuximide-induced suppression of pentylenetetrazol seizures. Epilepsia 51: 194–203, 1986.Google Scholar
  99. 99.
    Morimoto, K., Dragunow, M., Goddard, G. Deep prepyriform cortex kindling and its relation to amygdala kindling in the rat. Exp. Neurol. 94: 637–648, 1986.PubMedGoogle Scholar
  100. 100.
    Morita, K., Okamoto, M., Seki, K., Wada, J. Suppression of amygdala kindled seizure in cats by enhanced Gabaergic transmission in the substantia inominata. Exp. Neurol. 89: 225–236, 1985.PubMedGoogle Scholar
  101. 101.
    Moriwake, T., Morimoto, K., Sato, M. Roles of cat hippocampus in kindled amygdaloid convulsions. 12th Jpn. EEG-EMG Soc. Abstr. 131, 1982.Google Scholar
  102. 102.
    Moshe, S. and Albala, B. Nigral muscimol infusions facilitate the development of seizures in immature rats. Devel. Brain Res. 13: 305–308, 1984.Google Scholar
  103. 103.
    Moshe, S., Okada, R., Albala, B. Ventromedial thalamic lesions and seizure susceptibility. Brain Res. 337: 368–372, 1985.PubMedGoogle Scholar
  104. 104.
    Mutani, R. Experimental evidence for the existence of an extra rhinencephalic control of the activity of the cobalt rhinencephalic epileptogenic focus. Part I. The role played by the caudate nucleus. Epilepsia 10: 339–350, 1969.Google Scholar
  105. 105.
    Olianas, M., DeMontis, G., Concu, A., Tagliamonte, A., DiChiara, G. The striatal dopaminergic function is mediated by the inhibition of a nigral, non-dopaminergic neuronal system via a strionigral GABAergic pathway. Eur. J. Pharm. 49: 223–232, 1978.Google Scholar
  106. 106.
    Olney, J., deGubareff, T., Labruyere, J. Seizure-related brain damage induced by cholinergic agents. Nature 301: 520–522, 1983.PubMedGoogle Scholar
  107. 107.
    Olsen, R., Wamsley, J., McCabe, R., Lee, R., Lomax, P. Benzodiazepine/gammaaminobutyric acid receptor deficit in the midbrain of the seizure-susceptible gerbil. Proc. Natl. Acad. Sci. USA 82: 6701–6705, 1985.PubMedGoogle Scholar
  108. 108.
    Patel, S., Milian, M., Mello, L., Meldrum, B. 2-Amino-7-phosphonoheptanoic acid (2APH) infusion into entopeduncular nucleus protects against limbic seizures in rats. Neurosci. Lett. 64: 226–230, 1986.PubMedGoogle Scholar
  109. 109.
    Paz, C., Reygadas, E., Fernandez-Guardiola, A. Amygdala kindling in chronically cerebellectomized cats. Exp. Neurol. 88: 418–424, 1985.PubMedGoogle Scholar
  110. 110.
    Pazdernik, T., Cross, R., Giesler, M., Samson, F., Nelson, S. Changes in local cerebral glucose utilization induced by convulsants. Neurosci. 14: 823–835, 1985.Google Scholar
  111. 111.
    Pinel, J. Kindling-induced experimental epilepsy in rats: Cortical stimulation. Exp. Neurol. 72: 559–569, 1981.Google Scholar
  112. 112.
    Pinel, J. and Rover, L. Experimental epileptogensis: Kindling-induced epilepsy in rats. Exp. Neurol. 58: 190–202, 1978.PubMedGoogle Scholar
  113. 113.
    Piredda, S. and Gale, K. A crucial epileptogenic site in the deep prepiriform cortex. Nature 317: 623–625, 1985.PubMedGoogle Scholar
  114. 114.
    Piredda S. and Gale, K. Anticonvulsant action of 2-amino-7-phosphoneheptanoic acid and muscimol in the deep prepiriform cortex. Eur. J. Pharmacol. 120: 115–118, 1986.Google Scholar
  115. 115.
    Piredda, S., Pavlick, M., Gale, K. Anticonvulsant effects of GABA elevation in the deep prepiriform cortex. Epilepsy Res. 1: 102–106, 1987.PubMedGoogle Scholar
  116. 116.
    Piredda, S. and Gale, K. Role of excitatory amino acid transmission in the genesis of seizures elicited from the deep prepiriform cortex. Brain Res. 377: 205–210, 1986.PubMedGoogle Scholar
  117. 117.
    Przegalinski, E. Monoamines and the pathophysiology of seizure disorders. In: Antiepileptic Drugs, Handbook of Experimental Pharmacology, Vol. 74. H. Frey and D. Janz (eds). Berlin: Springer-Verlag, pp. 101–137, 1985.Google Scholar
  118. 118.
    Racine, R. Modification of seizure activity by electrical stimulation. II. Motor seizures. Electroenceph. Clin. Neurophysiol. 32: 281–294, 1972.Google Scholar
  119. 119.
    Racine, R. Kindling: The first decade. Neurosurgery 3: 234–252, 1978.PubMedGoogle Scholar
  120. 120.
    Racine, R. and Cosina, D. Effects of midbrain raphe lesions or systemic p-chlorophenylalanine on the development of kindled seizures in rats. Brain Res. Bull. 4: 1–7, 1979.PubMedGoogle Scholar
  121. 121.
    Raines, A. and Anderson, R. Effects of acute cerebellectomy on maximal electroshock seizures and anticonvulsant efficacy of Diazepam in the rat. Epilepsia 17: 177–182, 1976.PubMedGoogle Scholar
  122. 122.
    Reid, H., Bowler, K., Neiss, C. Hippocampal lesions increase the severity of unilaterally induced audiogenic seizures and decrease their latency. Exp. Neurol. 81: 240–244, 1983.PubMedGoogle Scholar
  123. 123.
    Ribak, C. Comtemporary methods in neurocytology and their application to the study of epilepsy. Adv. Neurol. 44: 739–764, 1986.PubMedGoogle Scholar
  124. 124.
    Savage, D., Rigsbee, L., McNamara, J. Knife cuts of entorhinal cortex: Effects on development of amygdaloid kindling and seizure-induced decrease of muscarinic cholinergic receptors. J. Neurosci. 51: 408–413, 1980.Google Scholar
  125. 125.
    Schwarcz, R., Zaczek, R., Coyle, J. Microinjection of kainic acid into the rat hippocampus. Eur. J. Pharmacol. 50: 209–220, 1978.PubMedGoogle Scholar
  126. 126.
    Schoen. Beitrage zur Pharmakologie der Korperstellung und der Labyrinthreflexe 22. Mitteilung: Hexeton und Cardiazol Arch. exp. Path. Pharmak. 113: 257–274, 1926.Google Scholar
  127. 127.
    Swinyard, E. Electrically induced convulsions. In: Experimental Models of Epilepsy. D. Purpura, J. Penry, D. Tower, D. Woodbury, R. Walters (eds). New York: Raven Press, pp. 433–458, 1972.Google Scholar
  128. 128.
    Tanaka, K. and Mishima, O. The localization of the center dealing with the tonic extensor seizure of electroshock. Jap. J. Pharmacology 3: 6–9, 1953.Google Scholar
  129. 129.
    Tanaka, K. and Kawasaki, Y. Effects of variation in stimulus intensity on maximal electroshock seizure pattern in the decerebrate and phenobarbital-treated mice. Yonago Acta Medica 2: 60–64, 1957.Google Scholar
  130. 130.
    Testa, G., Pellegrini, A., Giaretta, D. Effects of electrical stimulation and removal of cerebellar structures in an experimental model of generalized epilepsy. Epilepsia 20: 447–454, 1979.PubMedGoogle Scholar
  131. 131.
    Turski, W., Cavalheiro, E., Calderazzo-Filho, L., Kleinrok, Z., Czuczwar, S., Turski, L. Injections of picrotoxin and bicuculline into the amygdaloid complex of the rat: An electroencephalographic behavioral and morphological analysis. Neuroscience 14: 37–53, 1985.PubMedGoogle Scholar
  132. 132.
    Turski, L., Meldrum, B., Cavalheiro, E., Calderazzo-Filho, L., Bortolotto, Z., Ikonomidou-Turski, C., Turski, W. Paradoxical anticonvulsant activity of the excitatory amino acid N-methyl-d-aspartate in the rat caudate-putamen. Proc. Natl. Acad. Sci. 84: 1689–1693, 1987.PubMedGoogle Scholar
  133. 133.
    Turski, L., Cavalheiro, E., Schwarz, M., Turski, W., Morales Mello, L., Bortolotto, Z., Klockgether, T., Sontag, K. Susceptibility to seizures produced by pilocarpine in rats after microinjection of isoniazid and gamma-vinyl-GABA into the substantia nigra. Brain Res. 372: 294–309, 1986.Google Scholar
  134. 134.
    Turski, L., Cavalheiro, E., Turski, W., Meldrum, B. Excitatory neurotransmission within substantia nigra pars reticulata regulates threshold for seizures produced by pilocarpine in rats: Effects of intranigral 2-amino-7-phosphonoheptanoate and N-methyl-d-aspartate. Neuroscience 18: 61–77, 1986.PubMedGoogle Scholar
  135. 135.
    Van Hartesveldt, C. and Vernadakis, A. Convulsive responses in rats with hippocampal and neocortical lesions. Exp. Neurol. 36: 563–571, 1972.PubMedGoogle Scholar
  136. 136.
    Van Straaten, J. Abolition of electrically induced cortical seizures by stereotaxic thalamic lesions. Neurology 25: 141–149, 1975.PubMedGoogle Scholar
  137. 137.
    Velasco, F., Velasco, M., Romo R. Specific and nonspecific multiple unit activities during pentylenetetrazol seizures. 1. Animals with “encephale isole. ” Electroenceph. Clin. Neurophysiol. 49: 600–607, 1980.PubMedGoogle Scholar
  138. 138.
    Velasco, F., Velasco, M., Romo, R. Specific and nonspecific multiple-unit activities during pentylenetetrazol seizures in animals with pretrigeminal brain stem transection. Exp. Neurol. 74: 1–10, 1981.PubMedGoogle Scholar
  139. 139.
    Velasco, F., Velasco, M., Romo, R. Specific and nonspecific multiple unit activities during pentylenetetrazol seizures in animals with mesencephalic transections. Electroenceph. Clin. Neurophysiol. 53: 289–297, 1982.Google Scholar
  140. 140.
    Vincent, S., Hattori, T., McGeer, E. The nigrotectal projection: a biochemical and ultrastructural characterization. Brain Res. 151: 159–164, 1978.PubMedGoogle Scholar
  141. 141.
    Wada, J. and Sato, M. The generalized convulsive seizure state induced by daily electrical stimulation of the amygdala in split brain cats. Epilepsia 16: 417–430, 1975.PubMedGoogle Scholar
  142. 142.
    Wada, J. and Sato, M. Effects of unilateral lesion in the midbrain reticular formation on kindled amygdaloid convulsion in cats. Epilepsia 16: 693–697, 1975.PubMedGoogle Scholar
  143. 143.
    Wasterlain, C., Farber, D., Fairchild, M. Synaptic mechanisms in the kindled epileptic focus: A speculative synthesis. Adv. Neurol. 44: 411–433, 1986.Google Scholar
  144. 144.
    Willott, J. and Urban, G. Paleocerebellar lesions enhance audiogenic seizures in mice. Exp. Neurol. 58: 575–577, 1978.PubMedGoogle Scholar
  145. 145.
    Yoshida, K. Influences of bilateral hippocampal lesions upon kindled amygdaloid convulsive seizure in rats. Physiol. & Behay. 32: 123–126, 1984.Google Scholar
  146. 146.
    Zaczek, R. and Coyle, J. Excitatory amino acid analogues; neurotoxicity and seizures. Neuropharm. 21: 15–26, 1982.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Karen Gale
    • 1
  • Ronald A. Browning
    • 2
  1. 1.Department of PharmacologyGeorgetown University Medical CenterUSA
  2. 2.Departments of Physiology and PharmacologySouthern Illinois University School of MedicineCarbondaleUSA

Personalised recommendations