Advertisement

Some Subcortical Mechanisms Involved in Experimental Generalized Seizures

  • John W. Miller
  • James A. Ferrendelli

Abstract

The involvement of the cerebral cortex in the initiation, spread, and expression of many types of seizures was recognized as early as the nineteenth century by Hughlings Jackson (46,47). This was confirmed through observations of seizures resulting from electrical cortical stimulation in animals (25). Functional localization studies and electroencephalography (48,70) led to further emphasis on the role of the cerebral cortex, since subcortical contributions to unaveraged scalp recordings are insignificant (19). Nevertheless, noncortical structures are undoubtably involved in virtually all epileptic seizures since all cortical regions have direct subcortical connections which join these areas to systems subserving motor, sensory and other functions. Forty years ago, Penfield and Jasper (49,69,70) postulated an upper brainstem neural system, the “centrencephalic integrating system” with symmetric ascending connections with each hemisphere. Primary generalized seizures of all types were believed to originate in this system (70) and it was also felt to mediate the transformation of focal cortical seizures into generalized convulsions. This system was tentatively identified with the mesencephalic reticular formation and the midline and intralaminar thalamic nuclei and was thought to also be involved in higher cerebral functions such as voluntary movement, memory and consciousness itself (70).

Keywords

Substantia Nigra Superior Colliculus Reticular Formation Functional Anatomy Mammillary Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, G., DeLong, M. Organization of supraspinal motor systems. In: Diseases of the Nervous System, A.K. Asbury, G.M. McKhann, V.I. McDonald (eds). Philadelphia, PA: W.B. Saunders, 1986.Google Scholar
  2. 2.
    Andrews, C., Knowles, L., Hancock, J. Control of the tonic vibration reflex by the brain stem reticular formation in the cat. J. Neurol. Sci. 18: 217–226, 1973.CrossRefPubMedGoogle Scholar
  3. 3.
    Arushanian, E. and Avakian, R. Metrazol-induced petit mal: the role played by monoaminergic mechanisms and striatum. Pharmacol. Biochem. Behay. 8: 113–117, 1978.CrossRefGoogle Scholar
  4. 4.
    Bachus, S. and Gale, K. Muscimol microinfused into the nigrotegmental target area blocks selected components of behavior elicited by amphetamine or cocaine. Naunyn Schmiedeberg’s Arch. Pharmacol. 333: 143–148, 1986.CrossRefGoogle Scholar
  5. 5.
    Beckstead, R., Domesick, V., Nauta, V. Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res. 175: 191–217, 1979.CrossRefPubMedGoogle Scholar
  6. 6.
    Ben-Ari, Y., Tremblay, E., Riche, D., Ghilini, G., Naquet, R. Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazol: metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neurosci. 6 (7): 1361–1391, 1981.CrossRefGoogle Scholar
  7. 7.
    Bergmann, F., Costin, A., Gutman, J. A low threshold convulsive area in the rabbit’s mesencephalon. Electroenceph. clin. Neurophysiol. 15: 683–690, 1963.Google Scholar
  8. 8.
    Browning, R. Role of the brainstem reticular formation in tonic clonic seizures: lesion and pharmacological studies. Fed. Proc. 44: 2425–2431, 1985.PubMedGoogle Scholar
  9. 9.
    Browning, R. and Nelson, D. Modification of electroshock and pentylenetetrazol seizure patterns in rats after precollicular transection. Exp. Neurol. 93: 546–556, 1986.CrossRefPubMedGoogle Scholar
  10. 10.
    Browning, R., Nelson, D., Mogharreban, N., Jobe, P., Laird, H. Effects of midbrain and pontine tegmental lesions on audiogenic seizures in genetically epilepsy-prone rats. Epilepsia 26: 175–183, 1985.CrossRefPubMedGoogle Scholar
  11. 11.
    Browning, R., Simonton, R., Turner, F. Antagonism of experimentally induced tonic seizures following a lesion in the midbrain tegmentum. Epilepsia 22: 595–601, 1981.CrossRefPubMedGoogle Scholar
  12. 12.
    Browning, R., Turner, F., Simonton, R., Bundman, M. Effect of midbrain and pontine tegmental lesions on the maximal electroshock seizure pattern in rats. Epilepsia 22: 583–594, 1981.CrossRefPubMedGoogle Scholar
  13. 13.
    Burnham, W., Albright, P., Schneiderman, J., Chiu, P., Ninchoji, T. “Centrencephalic” mechanisms in the kindling model. In: Kindling 2, J. Wada (ed). New York: Raven Press, 1981.Google Scholar
  14. 14.
    Carpenter, M. and Batton, R. Connections of the fastigal nucleus in the cat and monkey. Exp. Brain Res. 6: 250–291, 1982.Google Scholar
  15. 15.
    Castiglioni, A., Gallaway, M., Coulter, J. Spinal projections from the midbrain in monkey. J. Comp. Neurol. 178: 329–346, 1978.CrossRefPubMedGoogle Scholar
  16. 16.
    Chiu, P. and Burnham, W. The effect of anticonvulsant drugs on convulsions triggered by direct stimulation of the brainstem. Neuropharmacology 21: 355–359, 1982.CrossRefPubMedGoogle Scholar
  17. 17.
    Cowan, W., Guillery, R., Powell, T. The origin of the mammillary peduncle and other hypothalamic connections from the midbrain. J. Anat. 98: 345–366, 1964.PubMedGoogle Scholar
  18. 18.
    Cowan, W. and Powell, T. An experimental study of the relationship between the medial mammillary nucleus and the cingulate cortex. Proc. Roy. Soc. B. 143: 114–125, 1954.CrossRefGoogle Scholar
  19. 19.
    Creutzfeldt, O. and Houchin, J. Neuronal basics of EEG waves. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol 2c, A. Remon (ed). Amsterdam: Elsevier, 1974.Google Scholar
  20. 20.
    Cruce, J. Autoradiographic study of the descending connections of the mammillary nuclei of the rat. J. Comp. Neurol. 176: 631–644, 1977.CrossRefPubMedGoogle Scholar
  21. 21.
    Edley, S. and Graybiel, A. Connections of the nucleus tegmenti pedunculopontinus, pars compacta (TPc) in cat. Anat. Rec. 196: 129A, 1980.Google Scholar
  22. 22.
    Esplin, D. Spinal cord convulsions. Arch. Neurol. 1: 485–490, 1959.CrossRefPubMedGoogle Scholar
  23. 23.
    Esplin, D. and Freston, J. Physiological and pharmacological analysis of spinal cord convulsions. J. Pharmacol. Exp. Ther. 13: 68–80, 1960.Google Scholar
  24. 24.
    Faingold, C., Krug, D., Milian, M., Meldrum, B. Effects of microinjection of 2aminophosphonoheptanoate (2-APH) into brainstem nuclei on audiogenic seizures (AGS) of the genetically epilepsy prone rat (GEPR). Fed. Proc. 45 (3): 676, 1986.Google Scholar
  25. 25.
    Ferrier, D. Experimental researches in cerebral physiology and pathology. West Riding Lunatic Asylum Medical Reports 3: 30–96, 1873.Google Scholar
  26. 26.
    Fowler, J. and Partridge, D. Effect of pentylenetetrazol on inward currents of non-bursting neurons and its role in plateau formation. Brain Res. 304: 47–58, 1984.CrossRefPubMedGoogle Scholar
  27. 27.
    Freedman, D. and Moosy, J. Effect of mesencephalic lesions on the cortical electroconvulsant threshold. Neurol. 3: 1714–1720, 1953.Google Scholar
  28. 28.
    Gale, K. Role of the substantia nigra in GABA-mediated anticonvulsant actions. In: Advances in Neurology, Vol. 44, A. Delgado-Escueta, A. Ward, D. Woodbury, R. Porter (eds). New York: Raven Press, 1986.Google Scholar
  29. 29.
    Gale, K. and Iadarola, M. Drug-induced elevation of GABA after intracerebral microinjection: site of anticonvulsant action. Eur. J. Pharmacol. 68: 233–235, 1980.CrossRefPubMedGoogle Scholar
  30. 30.
    Garant, D. and Gale, K. Lesions of substantia nigra protect against experimentally induced seizures. Brain Res. 273: 156–161, 1983.CrossRefPubMedGoogle Scholar
  31. 31.
    Garant, D. and Gale, K. Infusion of opiates into substantia nigra protects against maximal electroshock seizures in rat. J. Pharmacol. Exp. Therap. 234: 45–48, 1985.Google Scholar
  32. 32.
    Garant, D. and Gale, K. Nigrotectal projection is essential to the anticonvulsant action of GABA transmission in substantia nigra. Soc. Neurosci. Abst. 12: 80, 1986.Google Scholar
  33. 33.
    Garant, D. and Gale, K. Intranigral muscimol attenuates electrographic signs of seizure activity induced by intravenous bicuculline in rats. Eur. J. Pharmacol. 124: 365–369, 1986.CrossRefPubMedGoogle Scholar
  34. 34.
    Garant, D., Iadarola, M., Gale, K. Pharmacological manipulation of peptide-mediated transmission in rat substantia nigra: anticonvulsant effects. Soc. Neurosci. Abst. 281: 2, 1982.Google Scholar
  35. 35.
    Garcia-Rill, E., Skinner, R., Fitzgerald, J. Chemical activation of the mesencephalic locomotor region. Brain Res. 330: 43–54, 1985.CrossRefPubMedGoogle Scholar
  36. 36.
    Gilles, J., Burke, D., Lance, J. Supraspinal control of tonic vibration reflex. J. Neurophysiol. 34: 302–309, 1971.Google Scholar
  37. 37.
    Goodman, L., Swinyard, E., Toman, J. Laboratory techniques for the identification and evaluation of potentially antiepileptic drugs. Proc. Am. Fed. Clin. Res. 2: 100–101, 1945.PubMedGoogle Scholar
  38. 38.
    Grabow, J., Miller, J., Greene. K., Lennon, V. Pentylenetetrazol induced absence seizures in Lewis rats. Electroenceph. clin. Neurophysiol. 54: 62P, 1982.Google Scholar
  39. 39.
    Graybiel, A. Direct and indirect preoculomotor pathways of the brainstem: an autoradiographic study of the pontine reticular formation in the cat. J. Comp. Neurol. 175: 38–78, 1977.CrossRefGoogle Scholar
  40. 40.
    Guillery, R. Degeneration in the hypothalamic connections of the albino rat. J. Anat. 91: 91–115, 1957.PubMedGoogle Scholar
  41. 41.
    Hayakawa, T. and Zyo, K. Comparative anatomical study of the tegmentomammillary projections in some mammals: a horseradish peroxidase study. Brain Res. 300: 335–349, 1984.CrossRefPubMedGoogle Scholar
  42. 42.
    Hopkins, D. and Niessen, L. Substantia nigra projections to the reticular formation, superior colliculus and central gray in the rat, cat and monkey. Neurosci. Lett. 2: 253–259, 1976.CrossRefPubMedGoogle Scholar
  43. 43.
    Iadarola, M. and Gale, K. Cellular compartments of GABA in brain and their relationship to anticonvulsant activity. Mol. Biochem. 39: 305–330, 1981.CrossRefGoogle Scholar
  44. 44.
    Iadarola, M. and Gale, K. Substantia nigra: site of anticonvulsant activity mediated by gamma-aminobutyric acid. Science 218: 1237–1240, 1982.CrossRefPubMedGoogle Scholar
  45. 45.
    Irle, E., Sarter, M., Guldin, W., Markowitsch, H. Afferents to the ventral tegmental nucleus of Gudden in the mouse, rat, and cat. J. Comp. Neurol. 228: 509–541, 1984.CrossRefPubMedGoogle Scholar
  46. 46.
    Jackson, J. Selected writings of John Hughlings Jackson. Vol. I Epilepsy and Epileptiform Convulsions, J. Taylor (ed). London: Hodder and Stoughton, 1931.Google Scholar
  47. 47.
    Jackson, J. On the anatomical, physiological and pathological investigation of the epilepsies. West Riding Lunatic Asylum Medical Reports 3: 315–339, 1873.Google Scholar
  48. 48.
    Jasper, H. Localized analysis of the function of the human brain by the electroencephalogram. Arch. Neurol. Psych. 36: 1131–1134, 1936.Google Scholar
  49. 49.
    Jasper, H. and Droogleever-Fortuyn, J. Experimental studies on the functional anatomy of petit mal epilepsy. Res. Publ. Ass. Nerv. Ment. Dis. 26: 272–298, 1948.Google Scholar
  50. 50.
    Jinnai, D., Mogami, H., Mukawa, J., Iwata, Y., Kobayashi, K. Effect of brain-stem lesions on metrazol-induced seizures in cats. Electroenceph. clin. Neurophysiol. 27: 404–411, 1969.Google Scholar
  51. 51.
    Kreindler, A., Zuckermann, E., Steriade, M., Chimion, D. Electroclinical features of convulsions induced by stimulation of brain stem. J. Neurophysiol. 21: 430–436, 1958.PubMedGoogle Scholar
  52. 52.
    Kuypers, H. and Lawrence, D. Cortical projections to the red nucleus and the brain stem in the rhesus monkey. Brain Res. 4: 151–188, 1967.CrossRefPubMedGoogle Scholar
  53. 53.
    Lawrence, D. and Kuypers, H. The functional organization of the motor system in the monkey, I. The effects of bilateral pyramidal lesions. Brain 91: 1–14, 1968.CrossRefPubMedGoogle Scholar
  54. 54.
    Lawrence, D. and Kuypers, H. The functional organization of the motor system in the monkey, II. The effects of lesions of the descending brain-stem pathways. Brain 91: 15–26, 1968.CrossRefPubMedGoogle Scholar
  55. 55.
    Lippert, B., Metcalf, B., Jung, M., Casara, P. 4-Amino-hex-5-enoic acid, a selective catalytic inhibitor of aminobutyric-acid aminotransferase in mammalian brain. Eur. J. Biochem. 74: 441–445, 1977.CrossRefPubMedGoogle Scholar
  56. 56.
    Lundberg, A. Inhibitory control from the brainstem of transmission from primary afferents to motoneurons, primary afferent terminals and ascending pathways. In: Brain Stem Control of Spinal Mechanisms, B. Sjolund, A. Bjorklund (eds). New York: Elsevier, pp. 179–224, 1982.Google Scholar
  57. 57.
    Magoun, H. and Rhines, R. An inhibitory mechanism in the bulbar reticular formation. J. Neurophysiol. 9: 165–171, 1946.PubMedGoogle Scholar
  58. 58.
    Miller, J., McKeon, A., Ferrendelli, J. Comparison of the functional anatomy of pentylenetetrazol and electroshock seizures in the rat brainstem. Ann. Neurol. 22: 615–621, 1987.CrossRefPubMedGoogle Scholar
  59. 59.
    Mirski, M. and Ferrendelli, J. Interruption of the mammillothalamic tracts prevents seizures in guinea pigs. Science 226: 72–74, 1984.CrossRefPubMedGoogle Scholar
  60. 60.
    Mirski, M. and Ferrendelli, J. Selective metabolic activation of the mammillary bodies and their connections during ethosuximide-induced suppression of pentylenetetrazol seizures. Epilepsia 27 (3): 194–203, 1986.CrossRefPubMedGoogle Scholar
  61. 61.
    Mirski, M., McKeon, A., Ferrendelli, J. Anterior thalamus and substantia nigra: two distinct structures mediating experimental generalized seizures. Brain Res. 397: 377–380, 1986.CrossRefPubMedGoogle Scholar
  62. 62.
    Mirski, M. and Ferrendelli, J. Anterior thalamic mediation of generalized pentylenetetrazol seizures. Brain Res. 397: 377–380, 1986.CrossRefPubMedGoogle Scholar
  63. 63.
    Mirski, M. and Ferrendelli, J. Interruption of the connections of the mammillary bodies protects against generalized pentylenetetrazol seizures in guinea pigs. J. Neurosci. 7 (3): 662–670, 1987.PubMedGoogle Scholar
  64. 64.
    Morest, D. Connexions of the dorsal tegmental nucleus in rat and rabbit. J. Anat. 95: 229–246, 1961.PubMedGoogle Scholar
  65. 65.
    Mori, S., Nishimura, H., Kurakami, C., Yamamura, T., Aoki, M. Controlled locomotion in the mesencephalic cat: distribution of facilitatory and inhibitory regions within pontine tegmentum. J. Neurophysiol. 41 (6): 1580–1591, 1978.PubMedGoogle Scholar
  66. 66.
    Orlovsky, G. and Shik, M. Control of locomotion: a neurophysiological analysis of the cat locomotor system. Int. Rev. Physiol. 10: 281–317, 1976.Google Scholar
  67. 67.
    Pazdernik, T., Cross, R., Giesler, M., Samson, F., Nelson, S. Changes in local cerebral glucose utilization induced by convulsants. Neurosci. 14 (3): 823–835, 1985.CrossRefGoogle Scholar
  68. 68.
    Pellmar, T. and Vilson, V. Synaptic mechanism of pentylenetetrazole: selectivity for chloride conductance. Science 197: 912–914, 1977.CrossRefPubMedGoogle Scholar
  69. 69.
    Penfield, W. and Jasper, H. Highest level seizures. Res. Publ. Ass. Nerv. Ment. Dis. 26: 252–271, 1947.Google Scholar
  70. 70.
    Penfield, W. and Jasper, H. Epilepsy and the Functional Anatomy of the Human Brain. Boston: Little, Brown and Company, 1954.Google Scholar
  71. 71.
    Peterson, B. Reticulo-motor pathways: their connections and possible roles in motor behavior. In: Integration in the Nervous System, H. Asanuma, V. Wilson (eds). Tokyo: Igaku Shoin, pp. 185–200, 1979.Google Scholar
  72. 72.
    Prichard, J. Pentylenetetrazol-induced increase in chloride permeability of leech neurons. Brain Res. 27: 414–417, 1971.CrossRefPubMedGoogle Scholar
  73. 73.
    Putnam, T. and Merritt, H. Experimental determination of the anticonvulsant properties of some phenyl derivatives. Science 85: 525–526, 1937.CrossRefPubMedGoogle Scholar
  74. 74.
    Raines, A. and Anderson, R. Effects of acute cerebellectomy on maximal electroshock seizures and anticonvulsant efficacy of diazepam in the rat. Epilepsia 17: 177–182, 1976.CrossRefPubMedGoogle Scholar
  75. 75.
    Rodin, E., Onuma, T., Wasson, S., Porzak, J., Rodin, M. Neurophysiological mechanisms involved in grand mal seizures induced by metrazol and megimide. Electroenceph. clin. Neurophysiol. 30: 62–72, 1971.Google Scholar
  76. 76.
    Saper, C. and Loewy, A. Projections of the pedunculopontine tegmental nucleus in the rat: evidence for additional extrapyramidal circuitry. Brain Res. 252: 367–372, 1982.CrossRefPubMedGoogle Scholar
  77. 77.
    Seki, M. and Zyo, K. Anterior thalamic afferents from the mammillary body and the limbic cortex in the rat. J. Comp. Neurol. 229: 242–256, 1984.CrossRefPubMedGoogle Scholar
  78. 78.
    Speckman, E. and Caspers, H. Paroxysmal depolarization and changes in action potentials induced by pentylenetetrazol in isolated neurons of Helix pomatia. Epilepsia 14: 397–408, 1973.CrossRefGoogle Scholar
  79. 79.
    Stein, B., Magalhaes-Castro, B., Kurger, L. Relationship between visual and tactile representations in cat superior colliculus. J. Neurophysiol. 39: 401–419, 1976.PubMedGoogle Scholar
  80. 80.
    Straw, R. and Mitchell, C. The effect of pentylenetetrazol on bioelectrical activity recorded from the cat brain. Arch. Int. Pharmacodyn. 168 (2): 456–466, 1967.PubMedGoogle Scholar
  81. 81.
    Straw, R. and Mitchell, C. Study on the paroxysmal bioelectrical activity and overt seizure patterns elicited by pentylenetetrazol in the cat. Arch. Int. Pharmacodyn. 170 (1): 22–30, 1967.Google Scholar
  82. 82.
    Takeuchi, Y., Allen, G., Hopkins, D. Transnuclear transport and axon collateral projections of the mammillary nuclei in the rat. Brain Res. Bull. 14: 453–468, 1985.CrossRefPubMedGoogle Scholar
  83. 83.
    Valenstein, E. and Nauta, V. A Comparison of the distribution of the fornix system in the rat, guinea pig, cat, and monkey. J. Comp. Neurol. 113: 337–363, 1959.CrossRefPubMedGoogle Scholar
  84. 84.
    Velasco, F., Velasco, M., Estrada-Villanueva, F., Machado, J. Specific and nonspecific multiple unit activities during the onset of pentylenetetrazol seizures, I. Intact animals. Epilepsia 16: 207–214, 1975.CrossRefPubMedGoogle Scholar
  85. 85.
    Velasco, F., Velasco, M., Maldonado, H., Estrada-Villanueva, F. Specific and nonspecific multiple unit activities during the onset of pentylenetetrazol seizures. II. Acute lesions interrupting nonspecific system connections. Epilepsia 17: 461–475, 1976.CrossRefPubMedGoogle Scholar
  86. 86.
    Watanabe, K. and Kawana, E. A horseradish peroxidase study on the mammillothalamic tract in the rat. Acta Anat. 108: 394–40, 1980.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • John W. Miller
    • 1
  • James A. Ferrendelli
    • 1
  1. 1.Division of Clinical Neuropharmacology Department of Neurology and Neurological Surgery Department of PharmacologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations