Advertisement

Mechanisms of Kindling: A Speculative Hypothesis

  • James O. McNamara
  • Douglas W. Bonhaus
  • Cheolsu Shin

Abstract

The initial description of the kindling phenomenon was reported by Graham Goddard and his colleagues in 1967 (1). Kindling has subsequently become the most extensively studied animal model of epilepsy in the ensuing twenty years.

Keywords

Substantia Nigra Motor Seizure Dentate Granule Cell Limbic Seizure Kindling Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goddard, G. Development of epileptic seizures through brain stimulation at low intensity. Nature 214: 1020 - 1021, 1967.PubMedCrossRefGoogle Scholar
  2. 2.
    Racine, R. Kindling, the first decade. Neurosurgery 3: 234 - 252, 1978.PubMedCrossRefGoogle Scholar
  3. 3.
    McNamara, J, et al. The kindling model of epilepsy: a critical review. CRC Critical Reviews in Clinical Neurobiology 1: 341 - 391, 1985.PubMedGoogle Scholar
  4. 4.
    Wada, J. Kindling III. New York: Raven Press, 1986.Google Scholar
  5. 5.
    Racine, R. Modification of seizure activity by electrical stimulation: II. motor seizure. Electroencephalogr. Clin. Neurophysiol. 32: 281 - 294, 1972.CrossRefGoogle Scholar
  6. 6.
    Goddard, G., McIntyre, D., Leech, C. A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol. 25: 295 - 330, 1969.PubMedCrossRefGoogle Scholar
  7. 7.
    Morrell, F. and Tsura, N. Kindling in the Frog: Development of spontaneous epileptiform activity. Electroencephalogr. Clin. Neurophysiol. 40: 1 - 11, 1976.PubMedCrossRefGoogle Scholar
  8. 8.
    Leech, C. and McIntyre, D. Kindling rates in inbred mice: an analog to learning? Behay. Biol. 16: 439 - 452, 1976.Google Scholar
  9. 9.
    Tanaka, T. Progressive changes of behavioral and electroencephalographic responses to daily amygdaloid stimulation in rabbits. Fukuoka Acta. Med. 63: 152 - 163, 1972.Google Scholar
  10. 10.
    Wauquier, A., Ashton, D., Melis, W. Behavioral analysis of amygdaloid kindling in beagle dogs and the effects of clonazepam, diazepam, phenobarbital, diphenylhydantoin, and flunarizine on seizure manifestation. Exp. Neurol. 64: 579 - 586, 1979.PubMedCrossRefGoogle Scholar
  11. 11.
    Wada, J. and Sato, M. Generalized convulsive seizures induced by daily electrical stimulation of the amygdala in cats: correlative electrographic and behavioral features. Neurol. 24: 565 - 574, 1974.CrossRefGoogle Scholar
  12. 12.
    Wada, J. and Osawa, T. Spontaneous recurrent seizures induced by daily electric amygdaloid stimulation in Senegalese baboons (Papio Papio). Neurol. 26:273-286, 1976.Google Scholar
  13. 13.
    Racine, R. Modification of seizure activity by electrical stimulation. I. Afterdischarge threshold. Electroencephalogr. and Clin. Neurophysiol. 32: 269 - 280, 1972.Google Scholar
  14. 14.
    Wasterlain, C. and Jonec, V. Chemical kindling by muscarinic amygdaloid stimulation in the rat. Brain Res. 271: 311 - 323, 1983.PubMedCrossRefGoogle Scholar
  15. 15.
    Cain, D. and Corcoran, M. Kindling with low frequency stimulation: generality, transfer, and recruiting effects. Exp. Neurol. 73: 219 - 230, 1981.PubMedCrossRefGoogle Scholar
  16. 16.
    Racine, R., Burnham, W., Gartner, J., Levitin, D. Rates of motor seizure development in rats subjected to electrical brain stimulation: strain and interstimulation interval effects. Electroencephalogr. and Clin. Neurophysiol. 35: 553 - 556, 1973.Google Scholar
  17. 17.
    Pinel, J. and Rovner, L. Electrode placement and kindling-induced experimental epilepsy. Exp. Neurol. 58: 335 - 346, 1978.PubMedCrossRefGoogle Scholar
  18. 18.
    McIntyre, D. and Goddard, G. Transfer, interference and spontaneous recovery of convulsions kindled from the rat amygdala. Electroencephalogr. and Clin Neurophysiol. 35: 533 - 543, 1973.CrossRefGoogle Scholar
  19. 19.
    Messenheimer, J., Harris, E., Steward, O. Sprouting fibers gain access to circuitry transsynaptically altered by kindling. Exp. Neurol. 64: 469 - 481, 1979.PubMedCrossRefGoogle Scholar
  20. 20.
    Frush, D., Giacchino, J., McNamara, J. Evidence implicating dentate granule cells in development of entorhinal kindling. Exp. Neurol. 92: 92 - 101, 1986.PubMedCrossRefGoogle Scholar
  21. 21.
    Harrison, C., Sutula, T., Steward, O. Chronic epileptogenesis induced by kindling in the hippocampal formation: role of the dentate gyms. Neurosci. Abst. 10: 346, 1984.Google Scholar
  22. 22.
    Dasheiff, R. and McNamara, J. Intradentate colchicine retards the development of amygdala kindling. Ann. Neurol. 11: 347 - 352, 1982.PubMedCrossRefGoogle Scholar
  23. 23.
    Savage, D., Rigsbee, L., McNamara, J. Knife cuts of entorhinal cortex: effects on development of amygdaloid kindling and seizure-induced decrease of muscarinic cholinergic receptors. J. Neurosci. 5: 408 - 413, 1985.PubMedGoogle Scholar
  24. 24.
    Goddard, G. and Douglas, R. Does the engram of kindling model the engram of normal long term memory ? Can. J. Neurol. Sci. 2: 385 - 394, 1975.PubMedGoogle Scholar
  25. 25.
    Sutula, T. and Steward, O. Quantitative analysis of synaptic potentiation during kindling of the perforant path. J. Neurophysiol. 56: 732 - 746, 1986.PubMedGoogle Scholar
  26. 26.
    Douglas, R. and Goddard, G. Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus. Brain Res. 86: 205 - 215, 1975.PubMedCrossRefGoogle Scholar
  27. 27.
    Maru, E., Tatsuno, J., Okamoto, J., Ashida, H. Development and reduction of synaptic potentiation induced by perforant path kindling. Exp. Neurol. 78: 409 - 424, 1982.PubMedCrossRefGoogle Scholar
  28. 28.
    Mani, E. and Goddard, G. Excitatory and inhibitory synaptic modulation and dentate granule cell excitability associated with perforant path kindling. Neurosci. Abst. 10: 344, 1984.Google Scholar
  29. 29.
    Racine, R., Milgram, N., Hafner, S. Long-term potentiation phenomena in the rat limbic forebrain. Brain Res. 260: 217 - 231, 1983.PubMedCrossRefGoogle Scholar
  30. 30.
    King, G., Dingledine, R., Giacchino, J., McNamara, J. Abnormal neuronal excitability in hippocampal slices from kindled rats. J. Neurophysiol. 54: 1294 - 1304, 1985.Google Scholar
  31. 31.
    Wadman, W., Heinemann, U., Konnerth, A., Neuhaus, S. Hippocampal slices of kindled rats reveal calcium involvement in epileptogenesis. Exp. Brain Res. 57: 404 - 407, 1985.PubMedCrossRefGoogle Scholar
  32. 32.
    Marciani, M., Louvell, J., Heinemann, U. Aspartate induced changes in extra-cellular free calcium in vitro hippocampal slices of rats. Brain Res. 238: 272 - 277, 1982.PubMedCrossRefGoogle Scholar
  33. 33.
    Andersen, P., Holmqvist, B., Voorhoeve, P. Excitatory synapses in hippocampal apical dendrites activated by entorhinal stimulation. Acta Physiol. Scand. 66: 461 - 472, 1966.Google Scholar
  34. 34.
    Winson, J. and Abzug, C. Neuronal transmission through hippocampal pathways dependent on behavior. J. Neurophysiol. 41: 716 - 732, 1978.PubMedGoogle Scholar
  35. 35.
    Traynellis, S. and Dingledine, R. Prolonged seizure-like discharges in hippocampal CA1 neurons in vitro triggered by spontaneous interictal bursts originating in the CA3 region. Neurosci. Abst. 12: 74, 1986.Google Scholar
  36. 36.
    Nadler, J., Vaca, K., White, W., Lynch, G., Cotman, C. Aspartate and glutamate as possible transmitters of excitatory hippocampal afferents. Nature 260: 538 - 540, 1976.PubMedCrossRefGoogle Scholar
  37. 37.
    Dingledine, R., Hynes, M., King, G. Involvement of N-methyl-D-aspartate receptors in epileptiform bursting in rat hippocampal slices. J. Physiol. (London) 380: 175 - 189, 1986.Google Scholar
  38. 38.
    Korn, S., Giacchino, J., Chamberlin, N., Dingledine, R. Epileptiform burst activity induced by potassium in the hippocampus and its regulation by GABA-mediated inhibition. J. Neurophysiol. 57: 325 - 340, 1987.PubMedGoogle Scholar
  39. McNamara, Bonhaus, and Shin 99Google Scholar
  40. 39.
    Engel, J., Wolfson, L., Brown, L. Anatomical correlates of electrical behavioral events related to amygdaloid kindling. Ann. Neurol. 3: 538 - 544, 1978.PubMedCrossRefGoogle Scholar
  41. 40.
    Myslobodsky, N., Ackerman, R., and Engel, J. Effects of gamma-acetylenic GABA, and gamma-vinyl GABA on metrazol-activated and kindled seizures. Pharmacol. Biochem. Behay. 11: 265 - 271, 1979.CrossRefGoogle Scholar
  42. 41.
    Iadarola, M. and Gale, K. Substantia nigra: a site of anticonvulsant activity mediated by gamma-aminobutyric acid. Science 218: 1237 - 1240, 1982.PubMedCrossRefGoogle Scholar
  43. 42.
    McNamara, J., Galloway, M., Rigsbee, L., Shin, C. Evidence implicating substantia nigra in regulation of kindled seizure threshold. J. Neurosci. 4: 2410 - 2417, 1984.PubMedGoogle Scholar
  44. 43.
    Babington, R. and Wedeking, P. The pharmacology of seizures induced by sensitization with low intensity brain stimulation. Pharmacol. Biochem. Behay. 1: 46 1467, 1973.Google Scholar
  45. 44.
    Waszczak, B., Eng, N., Walters, J. Effects of muscimol and picrotoxin on single unit activity of substantia nigra neurons. Brain Res. 188: 185 - 197, 1980.PubMedCrossRefGoogle Scholar
  46. 45.
    Gerfen, C., Staines, W., Arbuthnott, G., Fibiger, H. Crossed connections of the substantia nigra in the rat. J. Comp. Neurol. 207: 283 - 303, 1982.PubMedCrossRefGoogle Scholar
  47. 46.
    Parent, A., Mackey, A., Smith, Y., Boucher, R. The output organization of the sub-stantia nigra in primate as revealed by a retrograde double labelling method. Brain Res. Bull. 10: 529 - 537, 1983.Google Scholar
  48. 47.
    Bonhaus, D., Walters J., McNamara, J. Activation of substantia nigra neurons: role in the propagation of seizures in kindled rats. J. Neurosci. 6: 3024 - 3030, 1986.PubMedGoogle Scholar
  49. 48.
    Ribak, C., Vaughan, J., Saito, K., Barber, R., Roberts, E. Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra. Brain Res. 116: 287 - 298, 1976.PubMedCrossRefGoogle Scholar
  50. 49.
    Sainsbury, R., Blant, B., Buchan, D. Electrically induced seizure activity in hippocampus: time course for post-seizure inhibition of subsequent kindled seizures. Behay. Biol. 22: 479 - 488, 1978.CrossRefGoogle Scholar
  51. 50.
    Burchfiel, J., Serpa, K., Duffy, H. Kindling antagonism: interactions of dorsal and ventral entorhinal cortex with the septum during concurrent kindling. Brain Res. 238: 3 - 12, 1982.PubMedCrossRefGoogle Scholar
  52. 51.
    Tuff, L., Racine, R., Adamec, R. The effects of kindling on GABA-mediated inhibition in the dentate gyms of the rat. I. paired-pulse depression. Brain Res. 277: 79 - 90, 1983.PubMedCrossRefGoogle Scholar
  53. 52.
    Oliver, M. and Miller, J. Alterations of inhibitory processes in the dentate gyms following kindling-induced epilepsy. Exp. Brain Res. 57: 443 - 447, 1985.PubMedCrossRefGoogle Scholar
  54. 53.
    Corcoran, M. and Mason, S. Role of forebrain catecholamines in amygdaloid kindling. Brain Res. 190: 473 - 484, 1980.PubMedCrossRefGoogle Scholar
  55. 54.
    Westerberg, V., Lewis, J., Corcoran, M. Depletion of noradrenaline fails to effect kindled seizures. Exp. Neurol. 84: 237 - 243, 1984.PubMedCrossRefGoogle Scholar
  56. 55.
    Albertson, T., Joy, R., Stark, L. Carbamazepine. Neuropharm. 23: 1117 - 1123, 1984.CrossRefGoogle Scholar
  57. 56.
    Steward, O. Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J. Comp. Neurol. 167: 285 - 314, 1976.CrossRefGoogle Scholar
  58. 57.
    Wyss, J. An autoradiographic study of the efferent connections of the entorhinal cortex in the rat. J. Comp. Neurol. 199: 495 - 512, 1981.CrossRefGoogle Scholar
  59. 58.
    McIntyre, D. and Wong, R. Cellular and Synaptic properties of amygdala-kindled pyriform cortex in vitro. J. Neurophysiol. 55: 1295 - 1307, 1986.PubMedGoogle Scholar
  60. 59.
    Fitz, J. and McNamara, J. Muscarinic cholinergic regulation of epileptic spiking in kindling. Brain Res. 178: 117 - 127, 1979.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • James O. McNamara
    • 1
  • Douglas W. Bonhaus
    • 1
  • Cheolsu Shin
    • 1
  1. 1.Departments of Medicine and PharmacologyDuke University and VA Medical CentersDurhamUSA

Personalised recommendations