Primary Generalized Seizures with Spike and Wave Discharge

  • Massimo Avoli


Primary generalized seizures are epileptic attacks in which the ictal discharge appears to start in all regions of the brain simultaneously (8). In this group bilaterally synchronous spike and wave (SW) discharges, as they occur in man during absence attack, can be regarded as the mildest form of generalized seizures. Generalized SW discharges appear suddenly and simultaneously in both cerebral hemispheres with an amplitude exceeding several times that of the normal EEG background activity. As shown in Figure 1, the SW pattern consists of an alternation between a brief polyphasic spike of usually less than 100 ms duration and a dome-shaped negative slow wave of about 300 ms duration occurring at a frequency of approximately 3 Hz. Within the polyphasic spike two brief negative and one longer positive components can often be discovered (44). A burst of generalized SW discharge stops just as abruptly as it had started and leaves no postictal depression of the EEG in its wave (Figure 1). If a generalized tonic-clonic convulsion evolves from generalized SW discharge, the slow wave component of the SW complex disappears and at least during the tonic phase, the discharge consists of uniform, rhythmic waves at a frequency of about 10 Hz.


Cortical Excitability Generalize Epilepsy Wave Discharge Thalamic Neuron Cortical Hyperexcitability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderman, E. Multifocal inheritance in the epilepsie. In: Advances in Epileptology: XI Epilepsy International Symposium, R. Canger, et al (eds). New York: Raven Press, 1986.Google Scholar
  2. 2.
    Avoli, M. Penicillin induced hyperexcitability in the in vitro hippocampal slice can be unrelated to impairment of somatic inhibition. Brain Res. 323: 154–158, 1984.PubMedCrossRefGoogle Scholar
  3. 3.
    Avoli, M. and Gloor, P. The effects of transient functional depression of the thalamus on spindles and on bilateral synchronous epileptic discharges of feline generalized Penicillin epilepsy. Epilepsia 22: 443–452, 1981.PubMedCrossRefGoogle Scholar
  4. 4.
    Avoli, M. and Gloor, P. Interaction of cortex and thalamus in spike and wave discharges of feline generalized penicillin epilepsy. Exp. Neurol. 76: 196–217, 1982.PubMedCrossRefGoogle Scholar
  5. 5.
    Avoli, M. and Gloor, P. Role of the thalamus in generalized penicillin epilepsy: Observations on decorticated cats. Exp. Neurol. 77: 386–402, 1982.PubMedCrossRefGoogle Scholar
  6. 6.
    Avoli, M., Gloor, P., Kostopoulos, G., Gotman, J. An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recording of cortical and thalamic single units. J. Neurophysiol. 50: 819–837, 1983.PubMedGoogle Scholar
  7. 7.
    Avoli, M. and Kostopoulos, G. Participation of corticothalamic cells in penicillin-induced spike and wave discharges. Brain Res. 247: 159–161, 1982.PubMedCrossRefGoogle Scholar
  8. 8.
    Bancaud, J., Henriksen, Rubio-Donnadieu, F., Seino, M., Dreifuss, F., Penry, J. Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia 22: 489–501, 1981.CrossRefGoogle Scholar
  9. 9.
    Curtis, D., Game, C., Johnston, G., McCulloch R., MacLachlan, R. Convulsive action of penicillin. Brain Res. 43: 242–245, 1972.PubMedCrossRefGoogle Scholar
  10. 10.
    Davenport, J, Schwindt, P., Crill, W. Epileptogenic doses of penicillin do not reduce a monosynaptic GABA-mediated post-synaptic inhibition in the intact anaesthetized cat. Exp. Neurol. 65: 557–572, 1979.CrossRefGoogle Scholar
  11. 11.
    Dingledine, R. and Gjerstad, L. Reduced inhibition during epileptiform activity in the in vitro hippocampal slice. J. Physiol. (London) 305: 297–313, 1980.Google Scholar
  12. 12.
    Fisher, R. and Prince, D. Spike-wave rhythms in cat cortex induced by parenteral penicillin. II Cellular features. Electroenceph. clin. Neurophysiol. 42: 625–639, 1977.PubMedCrossRefGoogle Scholar
  13. 13.
    Giaretta, D., Avoli, M., Gloor, P. Intracellular recordings in pericruciate neurons during spike and wave discharge of feline generalized penicillin epilepsy. Brain Res. 405: 68–73, 1987.PubMedCrossRefGoogle Scholar
  14. 14.
    Giaretta, D., Kostopoulos, G., Gloor, P. Avoli, M., Intracortical inhibitory mechanisms are preserved in feline generalized penicillin epilepsy. Neurosci. Lett., 1985Google Scholar
  15. 15.
    Gibbs, F. and Gibbs, E. Epilepsy. In: Atlas of Electroencephalography, Vol. 2. Cambridge: Addison Wesley, 1952.Google Scholar
  16. 16.
    Gloor, P. Generalized cortico-reticular epilepsies. Some considerations on the pathophysiology of generalized bilaterally synchronous spike and wave discharge. Epilepsia 9: 249–263, 1968.PubMedCrossRefGoogle Scholar
  17. 17.
    Gloor, P. Evolution of the concept of the mechanism of generalized epilepsy with bilateral spike and wave discharge. In: Modern Perspectives in Epilepsy, J. Wada (ed). Montreal: Eden Press, pp. 99–137, 1978.Google Scholar
  18. 18.
    Gloor, P. Generalized epilepsy with spike and wave discharge: a reinterpretation of its electrographic and clinical manifestation. Epilepsia 20: 571–588, 1979.PubMedCrossRefGoogle Scholar
  19. 19.
    Gloor, P., Metrakos, J., Metrakos, K., Anderman, E, van Gelder, N. Neurophysiological, genetic and biochemical nature of the epileptic diathesis. Electroenceph. clin. Neurophysiol. S35: 45–54, 1982.Google Scholar
  20. 20.
    Gloor, P., Quesney, L., Zumstein, H. Pathophysiology of generalized penicillin epilepsy in the cat: the role of cortical and subcortical cortical structures. II. Topical application of penicillin to the cerebral cortex and to subcortical structures. Electroenceph. clin. Neurophysiol. 43: 79–94, 1977.Google Scholar
  21. 21.
    Guberman, A., Gloor, P., Sherwin, A. Response of generalized penicillin epilepsy in the cat to ethosuximide and diphenylhydantoin. Neurology (Minneap), 25: 758–764, 1975.CrossRefGoogle Scholar
  22. 22.
    Heinemann, U., Lux, H., Gutnick, M. Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp. Brain Res. 27: 237–243, 1977.PubMedGoogle Scholar
  23. 23.
    Jasper, H. and Droogleever-Fortuyn, J. Experimental studies on the functional anatomy of petit mal epilepsy. Res. Publ. Ass. Nerv. Ment. Dis. 26: 272–298, 1946.Google Scholar
  24. 24.
    Kostopoulos, G. Neuronal sensitivity in GABA and glutamate in generalized epilepsy with spike and wave discharge. Exp. Neurol. 92: 20–36, 1986.PubMedCrossRefGoogle Scholar
  25. 25.
    Kostopoulos, G., Avoli, M., Gloor, P. Participation of cortical recurrent inhibition in the genesis of spike and wave discharges in feline generalized penicillin epilepsy. Brain Res. 267: 101–112, 1983.PubMedCrossRefGoogle Scholar
  26. 26.
    Kostopoulos, G., Gloor, P., Pellegrini, A., Gotman, J. A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: microphysiological features. Exp. Neurol. 73: 55–77, 1981.PubMedCrossRefGoogle Scholar
  27. 27.
    Kostopoulos, G., Gloor, P., Pellegrini, A., Siatitsas, I. A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: EEG features. Exp. Neurol. 73: 43–54, 1981.PubMedCrossRefGoogle Scholar
  28. 28.
    Krnjevic, K., Rendic, M., Straugham, D. An inhibitory process in the cerebral cortex. J. Physiol. 184: 16–48, 1966.PubMedGoogle Scholar
  29. 29.
    Marcus, E. and Watson, C. Bilateral synchronous spike wave electrographic patterns in the cat. Interaction of bilateral cortical foci in the intact, the bilateral cortico-callosal and a diencephalic preparation. Arch. Neurol. 14: 601–610, 1966.PubMedCrossRefGoogle Scholar
  30. 30.
    Metrakos, K. and Metrakos, J. Genetic of convulsive disorder. II Genetic and electroencephalographic studies in centrencephalic epilepsy. Neurology 11: 474–482, 1981.CrossRefGoogle Scholar
  31. 31.
    Musgrave, J. and Gloor, P. The role of corpus callosum in bilateral interhemispheric synchrony of spike and wave discharge in feline generalized epilepsy. Epilepsia 21: 369–378, 1980.PubMedCrossRefGoogle Scholar
  32. 32.
    Pellegrini, A., Gloor, P., Sherwin, A. Effect of valproate sodium on generalized penicillin epilepsy in the cat. Epilepsia 19: 351–360, 1978.PubMedCrossRefGoogle Scholar
  33. 33.
    Pellegrini, A., Musgrave, J., Gloor, P. Role of afferent input of subcortical origin in the genesis of bilaterally synchronous epileptic discharges of feline generalized penicillin epilepsy. Exp. Neurol. 64: 155–173, 1079.CrossRefGoogle Scholar
  34. 34.
    Penfield, W. and Jasper, H. Epilepsy and the Functional Anatomy of the Human Brain. Boston: Little, Brown and Co., 1954.Google Scholar
  35. 35.
    Pollen, U., Perot, P., Reid, K. Experimental bilateral wave and spike from thalamic stimulation in relation to level of arousal. Electroenceph. clin. Neurophysiol. 15: 1017–1028, 1963.PubMedCrossRefGoogle Scholar
  36. 36.
    Prince. D. and Farrell, D. “Centrencephalic” spike-wave discharges following par-enteral penicillin injection in the cat. Neurology (Minneap), 19: 309–310, 1969.Google Scholar
  37. 37.
    Renaud, L., Kelly, J., Provini, L. Synaptic inhibition in pyramidal tract neurons: membrane potential and conductance changes evoked by pyramidal tract stimulation. J. Neurophysiol. 37: 1144–1155, 1979.Google Scholar
  38. 38.
    Tayor-Courval, D. and Gloor, P. Behavioral alterations associated with generalized spike and wave discharges in the EEG of the cat. Exp. Neurol. 83: 167–186, 1984.CrossRefGoogle Scholar
  39. 39.
    van Gelder, M. Taurine, the compartmentalized metabolism of glutamic acid and the epilepsies. Can. J. Physiol. Pharmacol. 56: 362–374, 1978.CrossRefGoogle Scholar
  40. 40.
    van Gelder, N., Aslam Jangua, N., Metrakos, K., MacGibbob, B., Metrakos, J. Plasma aminoacids in 3/sec spike-wave epilepsy. Neurochem. Res. 5: 661–673, 1980.CrossRefGoogle Scholar
  41. 41.
    van Gelder, N. and Courtois, A. Close correlation between changing content of specific aminoacid in epileptogenic cortex of cats and severity of epilepsy. Brain Res. 43: 477–484, 1972.PubMedCrossRefGoogle Scholar
  42. 42.
    van Gelder, N., Sherwin, A., and Rasmussen, T. Aminoacid content of epileptogenic human brain: focal “versus” surrounding regions. Brain Res. 40: 385–393, 1972.PubMedCrossRefGoogle Scholar
  43. 43.
    van Gelder, N., Siatitsas, I., Menini, C., Gloor, P. Feline generalized penicillin epilepsy: Changes in glutamic acid and taurine parallel the progressive increase in excitability of the cortex. Epilepsia 24: 200–213, 1983.PubMedCrossRefGoogle Scholar
  44. 44.
    Weir, B. The morphology of the spike-wave complex. Electroenceph. clin. Neurophysiol. 19: 284–290, 1965.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Massimo Avoli
    • 1
  1. 1.Department of Neurology and NeurosurgeryMcGill University, Montreal Neurological InstituteMontrealCanada

Personalised recommendations