Advertisement

NMR Studies of Metabolism in Experimental Models

  • James W. Prichard

Abstract

Epileptic seizures call forth higher rates of cerebral blood flow and consumption of oxygen and glucose than any other reversible metabolic stress. Intimate understanding of these events is important for two quite different reasons. First, activation of metabolism during seizures is likely to occur by invoking in extreme form mechanisms which under more moderate circumstances subserve normal function. Viewed that way, investigation of epileptic pathophysiology is an avenue to understanding of still larger matters than the neurobiological basis of a major health problem. Second, permanent cell damage is a well documented consequence of intense, prolonged seizure discharge; prevention of it depends in part on learning precisely how it occurs. Magnetic resonance spectroscopy (MRS) has recently become available for the study of cerebral metabolism in vivo; the first few years of its development have been reviewed (1). Observation of well-known metabolic changes in seizures was a natural validating step in development of the new technology, which makes measurement of cerebral phosphocreatine (PCr), adenosine triphosphate (ATP), intracellular pH (pHi) and lactate possible in the living brain. Since the behavior of these variables during experimental seizures has been documented abundantly by other techniques, induction of seizures offered an opportunity to assess the practical capability of MRS to detect large, predictable metabolic changes in vivo. The validating phase of the work was successful, and MRS methods now appear to be capable of examining aspects of seizure metabolism which are difficult to study any other way. An example of this is a previously unappreciated dissociation between the pHi and lactate content of seizing cerebrum in the rabbit, described in the last section of this chapter.

Keywords

Cerebral Blood Flow Status Epilepticus Lactate Elevation Seizure Discharge Shock Train 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prichard, J. and Shulman, R., NMR spectroscopy of brain metabolism in vivo. Ann. Rev. Neurosci. 9: 61–85, 1986.CrossRefPubMedGoogle Scholar
  2. 2.
    Chapman, A., Cerebral energy metabolism and seizures. In: Recent Advances in Epilepsy, T. Pedley and B. Meldrum (eds). New York: Churchill Livingstone, pp. 1963, 1985.Google Scholar
  3. 3.
    Sakabe, T., Maekawa, T., Ishikawa, T. and Takashita, H., The effects of lidocaine on canine cerebral metabolism and circulation related to the electroencephalogram. Anesthesiology 40: 433–441, 1974.CrossRefPubMedGoogle Scholar
  4. 4.
    Plum, F., Posner, J. and Troy, B., Cerebral metabolic and circulatory responses to induced convulsions in animals. Arch. Neurol. 18: 1–13, 1968.CrossRefPubMedGoogle Scholar
  5. 5.
    Brown, M., Brown, G. and Hines, H., Changes in blood flow, blood pressure and cardiac rate associated with electroconvulsive shock. Am. J. Psychiat. 109: 27–31, 1952.PubMedGoogle Scholar
  6. 6.
    Vern, B., Schuette, W., Whitehouse, W. and Mutsuga, N., Cortical oxygen consumption and NADH fluorescence during metrazol seizures in normotensive and hypotensive cats. Exp. Neurol. 52: 83–89, 1976.CrossRefPubMedGoogle Scholar
  7. 7.
    Heiss, W., Turnheim, M., Vollmer, R. and Rappelsberger, P., Coupling between neuronal activity and focal blood flow in experimental seizures. Electroenceph. Clin. Neurophysiol. 47: 396–403, 1979.CrossRefPubMedGoogle Scholar
  8. 8.
    Doba, N., Beresford, H. and Reis, D., Changes in regional blood flow and cardiodynamics associated with electrically and chemically induced epilepsy in cat. Brain Res. 90: 115–132, 1975.CrossRefPubMedGoogle Scholar
  9. 9.
    Geiger, A. and Magnes, J., The isolation of the cerebral circulation and the perfusion of the brain in the living cat. Am. J. Physiol. 149: 517–537, 1947.PubMedGoogle Scholar
  10. 10.
    Meldrum, B. and Nilsson, B., Cerebral blood flow and metabolic rate early and late in prolonged epileptic seizures induced in rats by bicuculline. Brain 99: 523–542, 1976.CrossRefPubMedGoogle Scholar
  11. 11.
    Blennow, G., Folbergrova, J., Nilsson, B. and Siesjo, B., Effects of bicuculline-induced seizures on cerebral metabolism and circulation of rats rendered hypoglycemic by starvation. Ann. Neurol. 5: 139–151, 1979.CrossRefPubMedGoogle Scholar
  12. 12.
    Blennow, G., Folbergrova, J., Nilsson, B. and Siesjo, B., Cerebral metabolic and circulatory changes in the rat during sustained seizures induced by DL-homocysteine. Brain Res. 179: 129–146, 1979.CrossRefPubMedGoogle Scholar
  13. 13.
    Horton, R., Meldrum, B., Pedley, T. and McWilliam, J., Regional cerebral blood flow in the rat during prolonged seizure activity. Brain Res. 192: 399–412, 1980.CrossRefPubMedGoogle Scholar
  14. 14.
    Ingvar, M. and Siesjo, B., Cell damage in sustained seizures: role of local cerebral blood flow and local metabolic rate. J. Cereb. Blood Flow Metab. 1:s98- s99, 1981.Google Scholar
  15. 15.
    Ingvar, M., Soderfeldt, B., Folbergrova, J., Kalimo, H., Olsson, Y. and Siesjo, B., Metabolic, circulatory and structural alterations in the rat brain induced by sustained pentylenetetrazol seizures. Epilepsia 25: 191–204, 1984.CrossRefPubMedGoogle Scholar
  16. 16.
    Collins, R., Posner, J. and Plum, F., Cerebral energy metabolism during electroshock seizures in mice. Am. J. Physiol. 218: 943–950, 1970.PubMedGoogle Scholar
  17. 17.
    Bolwig, T. and Quistorff, B., In vivo concentration of lactate in the brain of conscious rats before and during seizures: A new ultra-rapid technique for the freeze-sampling of brain tissue. J. Neurochem. 21:1345–1348, 1973.CrossRefPubMedGoogle Scholar
  18. 18.
    King, L., Schoepfle, G., Lowry, O., Passoneau, J. and Wilson, S., Effects of electrical stimulation on metabolites in brain of decapitated mice. J. Neurochem. 14: 613–618, 1967.CrossRefPubMedGoogle Scholar
  19. 19.
    Sacktor, B., Wilson, J. and Tiekert, C., Regulation of glycolysis in brain, in situ, during convulsions. J. Biol. Chem. 241: 5071–5075, 1966.PubMedGoogle Scholar
  20. 20.
    King, L., Lowry, O., Passonneau, J. and Venson, V., Effects of convulsants on energy reserves in the cerebral cortex. J. Neurochem. 14: 599–611, 1967.CrossRefPubMedGoogle Scholar
  21. 21.
    Folbergrova, J., Energy metabolism of mouse cerebral cortex during homocysteine convulsions. Brain Res. 81: 443–454, 1974.CrossRefPubMedGoogle Scholar
  22. 22.
    Duffy, T., Howse, D. and Plum, F., Cerebral energy metabolism during experimental status epilepticus. J. Neurochem. 24: 925–934, 1975.CrossRefPubMedGoogle Scholar
  23. 23.
    Chapman, A., Meldrum, B. and Siesjo, B., Cerebral metabolic changes during prolonged epileptic seizures in rats. J. Neurochem. 28: 1025–1035, 1977.CrossRefPubMedGoogle Scholar
  24. 24.
    Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M., Patlak, C., Pettigres, K., Sakurada, O. and Shinohara, M., The 14C deoxyglucose method for the measurement of local cerebral glucose utilization. J. Neurochem. 28: 897–916, 1977.CrossRefPubMedGoogle Scholar
  25. 25.
    Siesjo, B., Ingvar, M., Folbergrova, J. and Chapman, A., Local cerebral circulation and metabolism in bicuculline-induced status epilepticus: relevance for development of cell damage. In: Advances in Neurology, A. Delgado-Escueta, C. Wasterlain, D. Treiman, and R. Porter (eds). New York: Raven Press, pp. 217–230, 1983.Google Scholar
  26. 26.
    Ingvar, M. and Siesjo, B., Local blood flow and glucose consumption in the rat brain during sustained bicuculline-induced seizures. Acta Neurol. Scand. 68: 129–144, 1983.Google Scholar
  27. 27.
    Evans, M. and Meldrum, B., Regional brain glucose metabolism in chemically-induced seizures in the rat. Brain Res. 297: 235–245, 1984.CrossRefPubMedGoogle Scholar
  28. 28.
    Kuhl, D., Engel, J., Phelps, M. and Selin, C., Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3. Ann. Neurol. 8: 348–360, 1980.CrossRefPubMedGoogle Scholar
  29. 29.
    Theodore, W., Newmark, M., Sato, S., Brooks, R., Patronas, N., DeLaPaz, R., DiChiro, G., Kessler, R., Margolin, R., Manning, R., Channing, M. and Porter, R., (18F)Fluorodeoxyglucose positron emission tomography in refractory complex partial seizures. Ann. Neurol. 14: 429–437, 1983.CrossRefPubMedGoogle Scholar
  30. 30.
    Engel, J., Kuhl, D. and Phelps, M., Patterns of local cerebral glucose metabolism during epileptic seizures. Science 218: 64–66, 1982.CrossRefPubMedGoogle Scholar
  31. 31.
    Engel, J., Kuhl, D., Phelps, M., Rausch, R. and Nuwer, M., Local cerebral metabolism during partial seizures. Neurology, 33: 400–413, 1983.CrossRefPubMedGoogle Scholar
  32. 32.
    Gilboe, D. and Betz, A., Oxygen uptake in the isolated canine brain. Am. J. Physiol. 224: 588–595, 1973.PubMedGoogle Scholar
  33. 33.
    Michenfelder, J. and Cucchiara, R., Canine cerebral oxygen consumption during enflurane anesthesia and its modification during induced seizures. Anesthesiology 40: 575–580, 1974.CrossRefPubMedGoogle Scholar
  34. 34.
    Schmidt, C., Kety, S. and Pennes, H., The gaseous metabolism of the brain of the monkey. Am. J. Physiol. 143: 33–52, 1945.Google Scholar
  35. 35.
    Brodersen, P., Paulson, O., Bolwig, T., Rogon, E., Rafaelsen, O. and Lassen, N., The mechanism of cerebral hyperemia in electrically induced epileptic seizures in man. In: Cerebral Circulation and Metabolism, T. Langfitt, L. McHenry, M. Reivich, and H. Wollman (eds). New York: Springer Verlag, pp. 365–367, 1975.CrossRefGoogle Scholar
  36. 36.
    Sokoloff, L., Lassen, N., McKhann, G., Tower, D. and Albers, R., Effects of pyridoxine withdrawal on cerebral circulation and metabolism in a pyridoxine-dependent child. Nature 183: 751–753, 1959.CrossRefPubMedGoogle Scholar
  37. 37.
    Depresseux, J., Franck, G. and Sadzot, B., Regional cerebral blood flow and oxygen uptake rate in human focal epilepsy. In: Current Problems in Epilepsy: I. Cerebral blood flow, metabolism and epilepsy, M. Baldy-Moulinier, D. Ingvar, and B. Meldrum (eds). London: John Libbey, pp. 76–81, 1984.Google Scholar
  38. 38.
    Rothman, D., Behar, K., Hetherington, H., den Hollander, J., Bendall, M., Petroff, O. and Shulman, R., 1H observed 13C decoupled spectroscopic measurements of lactate and glutamate in the rat brain in vivo. Proc. Natl. Acad. Sci. (USA) 82: 1633–1637, 1985.CrossRefGoogle Scholar
  39. 39.
    Gadian, D., Nuclear Magnetic Resonance and its Applications to Living Systems. Oxford: Clarendon Press, 1982.Google Scholar
  40. 40.
    Budinger, T. and Cullander, C., Biophysical phenomena and health hazards of in vivo magnetic resonance. In: Clinical Magnetic Resonance Imaging, A. Margulis, C. Higgins, L. Kaufman, and L. Crooks (eds). San Francisco: Radiol. Res. Educ. Foundation, pp. 303–320, 1983.Google Scholar
  41. 41.
    NRPB Revised guidance on acceptable limits of exposure during nuclear magnetic resonance clinical imaging. (Statement by National Radiological Protection Board). Br. J. Radiol. 56: 974–977, 1983.CrossRefGoogle Scholar
  42. 42.
    Saunders, R. and Smith, H., Safety aspects of NMR clinical imaging. Br. Med. Bull. 40: 148–154, 1984.PubMedGoogle Scholar
  43. 43.
    Ackerman, J., Grove, T.H., Wong, G., Gadian, D. and Radda, G., Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature, 283: 167–170, 1980.CrossRefPubMedGoogle Scholar
  44. 44.
    Ackerman, J., Berkowitz, B. and Deuel, R., Phosphorus-31 NMR of rat brain in vivo with bloodless perfluorocarbon perfused rat. Biochem. Biophys. Res. Commun. 119: 913–919, 1984.CrossRefPubMedGoogle Scholar
  45. 45.
    Bottomley, P., Kogure, K., Namon, R. and Alonso, O., Cerebral energy metabolism in rats studied by phosphorus nuclear magnetic resonance using surface coils. Magnet. Reson. Imag. 1: 81–85, 1982.CrossRefGoogle Scholar
  46. 46.
    Naruse, S., Takada, S., Koizuka, I. and Watari, H., In vivo 31P NMR studies on experimental cerebral infarction. Japan J. Physiol. 33:19–28, 1983.CrossRefGoogle Scholar
  47. 47.
    Naruse, S., Horikawa, Y., Tanaka, C., Hirakawa, K., Nishikawa, H. and Watari, H., In vivo measurement of energy metabolism and the concomitant monitoring of encephalogram in experimental cerebral ischemia. Brain Res. 206:370–372, 1984.CrossRefGoogle Scholar
  48. 48.
    Delpy, D., Gordon, R., Hope, P., Parker, D., Reynolds, E., Shaw, D. and Whitehead, M., Noninvasive investigation of cerebral ischemia by phosphorus nuclear magnetic resonance. Pediatrics 70: 310–313, 1982.PubMedGoogle Scholar
  49. 49.
    Thulborn, K., duBoulay, G., Duchen, L. and Radda, G. A 31P nuclear magnetic resonance in vivo study of cerebral ischemia in the gerbil. J. Cerebral Blood Flow Metab. 2: 299–306, 1982.CrossRefGoogle Scholar
  50. 50.
    Prichard, J., Alger, J., Behar, K., Petroff, O. and Shulman, R., Cerebral metabolic studies in vivo by 31P NMR. Proc. Natl. Acad. Sci. (USA) 80: 2748–2751, 1983.CrossRefGoogle Scholar
  51. 51.
    Decorps, M., Lebas, J., Leviel, J., Confort, S., Remy, C. and Benabid, A., Analysis of brain metabolism changes induced by acute potassium cyanide intoxication by 31P NMR in vivo using chronically implanted surface coils. FEBS Lett. 168: 1–6, 1984.CrossRefPubMedGoogle Scholar
  52. 52.
    Hilberman, M., Subramanian, V., Haselgrove, J., Cone, J., Egan, J., Gyulai, L. and Chance, B., In vivo time-resolved brain phosphorus nuclear magnetic resonance. J. Cerebral Blood Flow Metab. 4:334–342, 1984.CrossRefGoogle Scholar
  53. 53.
    Behar, K., den Hollander, J., Stromski, M., Ogino, T., Shulman, R., Petroff, O. and Prichard, J., High-resolution 1H nuclear magnetic resonance study of cerebral hypoxia in vivo. Proc. Natl. Acad. Sci. (USA) 80: 4945–4948, 1983.CrossRefGoogle Scholar
  54. 54.
    Behar, K., Rothman, D., Shulman, R., Petroff, O. and Prichard, J., Detection of cerebral lactate in vivo during hypoxemia by 1H NMR at relatively low field strengths (1.9 Tesla). Proc. Natl. Acad. Sci. (USA) 81: 2517–2519, 1984.CrossRefGoogle Scholar
  55. 55.
    Petroff, O., Prichard, J., Ogino, T., Avison, M., Alger, J. and Shulman, R., Combined 1H and 31P nuclear magnetic resonance studies of bicuculline-induced seizures in vivo. Ann. Neurol. 20: 185–193, 1986.CrossRefPubMedGoogle Scholar
  56. 56.
    Hore, P., Solvent suppression in Fourier transform nuclear magnetic resonance. J. Magn. Reson. 55: 283–300, 1983.Google Scholar
  57. 57.
    Brindle, K., Porteous, R. and Campbell, I., 1H NMR measurements of enzyme catalyzed 15N-label exchange. J. Magn. Reson. 56: 543–547, 1984.Google Scholar
  58. 58.
    Hetherington, H., Avison, M. and Shulman, R., 1H homonuclear editing of rat brain using semi-selective pulses. Proc. Natl. Acad. Sci. (USA) 82: 3115–3118, 1985.CrossRefGoogle Scholar
  59. 59.
    Rothman, D., Behar, K., Hetherington and Shulman, R., Homonuclear 1H double resonance difference spectroscopy of the rat brain in vivo. Proc. Natl. Acad. Sci. (USA) 81: 6330–6334, 1984.CrossRefGoogle Scholar
  60. 60.
    Petroff, O., Prichard, J., Behar, K., Alger, J. and Shulman, R., In vivo phosphorus nuclear magnetic resonance spectroscopy in status epilepticus. Ann. Neurol. 16:169–177, 1984.CrossRefPubMedGoogle Scholar
  61. 61.
    Young, R., Osbakken, M., Briggs, R., Yagel, S., Rice, D. and Goldberg, S., 31P NMR study of cerebral metabolism during prolonged seizures in the neonatal dog. Ann. Neurol. 18: 14–20, 1985.CrossRefPubMedGoogle Scholar
  62. 62.
    Young, R., Briggs, R., Yagel, S. and Gorman, I., 31P NMR study of the effect of hypoxemia on neonatal status epilepticus. Pediatr. Res. 20: 581–586, 1986.CrossRefPubMedGoogle Scholar
  63. 63.
    Younkin, D., Delivoria-Papadopoulas, M., Maris, J., Donlon, E., Clancy, R. and Chance, B., Cerebral metabolic effects of neonatal seizures measured with in vivo 31P NMR spectroscopy. Ann. Neurol. 20: 513–519, 1986.CrossRefPubMedGoogle Scholar
  64. 64.
    Matthews, P., Bland, J., Gadian, D. and Radda, G., A 31P-NMR saturation transfer study of the regulation of creatine kinase in the rat heart. Biochem. Biophys. Acta. 721: 312–320, 1982.CrossRefPubMedGoogle Scholar
  65. 65.
    Paschen, W., Djuricic, B., Mies, G., Schmidt-Kastner, R. and Linn, F., Lactate and pH in the brain: Association of dissociation in different pathophysiological states. J. Neurochem. 48: 154–159, 1987CrossRefPubMedGoogle Scholar
  66. 66.
    Prichard, J., Petroff, O., Ogino, T. and Shulman, R., Cerebral lactate elevation by electroshock: A 1H magnetic resonance study. Ann. NY Acad. Sci. 508: 54–63, 1987.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • James W. Prichard
    • 1
  1. 1.Department of NeurologyYale University School of MedicineNew HavenUSA

Personalised recommendations