Coupling of Energy Metabolism and Ictal Transformation

  • Michael O’Connor


Abrupt but lasting changes in effectiveness of electrical transmission can occur as a result of changes in calcium or sodium metabolism (3,13,23). Shifts in intracellular and extracellular ionic environment or redox state can change the bias of metabolic pathways involving neurotransmitters and thus effect electrical activity (10,31). The role of such metabolic change in ictal transformation is not known. The purpose of this chapter is to indicate some of the data that potentially links metabolic to electrical activity at ictal transformation. It is not meant to be comprehensive.


Temporal Lobe Epilepsy Epileptiform Activity Extracellular Potassium Direct Cortical Stimulation Epileptic Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Astrup, J., Seisjo, B., Symon, L., Thresholds in cerebral ischemia-The Ischemic Penumbra. Stroke 12: 723–725, 1981.PubMedCrossRefGoogle Scholar
  2. 2.
    Astrup, J., Beinnow, G., Nilsson, B., Effects of reduced cerebral blood flow upon EEG pattern, cerebral extracellular potassium and energy metabolism in the rat cortex during bicucilline-induced seizures. Br. Res. 177: 115–126, 1979.CrossRefGoogle Scholar
  3. 3.
    Balestrino, M., Aitken, P., Somjen, G., The effects of moderate changes of extra-cellular K and Ca on synaptic and neural function in the CAl region of the hippocampal slice. Br. Res. 377: 229–239, 1986.CrossRefGoogle Scholar
  4. 4.
    Barolin, G., The cerebrovascular epilepsies, Neurosciences (EEG Sup. No 35) Broughton, R. (ed). Amsterdam: Elsevier, pp. 287–295, 1982.Google Scholar
  5. 5.
    Blank, W. and Dirshner, H., The kinetics of extracellular potassium changes during hypoxia and anoxia. Br. Res. 123: 113–124, 1977.CrossRefGoogle Scholar
  6. 6.
    Blaustein, M., The interrelationship between sodium and Ca fluxes across cell membranes. Rev. Physical Biochem. Pharmacol. 70: 33–82, 1979.CrossRefGoogle Scholar
  7. 7.
    Bryan, R. and Jobsis, F., Insufficient supply of reducing equivalents to the respiratory chain in cerebral cortex during severe insulin induced hypoglycemia in cats. J. of Cerebral Blood Flow and Metabolism 6: 286–291, 1986.CrossRefGoogle Scholar
  8. 8.
    Davis, A., Janigro, D., Schwartzkroin, P., Effects of the tissue preincubation and hypoxia on CA3 hippocampal neurons in the in vitro slice preparation. Br. Res. 370: 44–53, 1986.CrossRefGoogle Scholar
  9. 9.
    Engel, J., Pathophysiology Of Human Brain Metabolism in Epilepsy. In Basic Mechamisms of Epileptogenesis: The Transition to Seizure, M. Dichter, (ed). New York: Plenum Press, 1988.Google Scholar
  10. 10.
    Ferrendelli, J., Relationship between seizures and cyclic neucleotides in the central nervous system. Adv. in Neurol. 34:353–357, 1983.Google Scholar
  11. 11.
    Fischer-Williams, M., Partial and generalized seizures associated with cerebral ischemia. Neurosciences (EEG sup. No. 35) Broughton, R. (ed). Amsterdam: Elsevier, pp. 273–286, 1982.Google Scholar
  12. 12.
    Friede, R., The cytochemistry of normal and reactive astrocytes. J. Neuropathol. Exp. Neurol. 21: 471–478, 1962.PubMedCrossRefGoogle Scholar
  13. 13.
    Gustafson, B. and Wystrom, H., Hyperpolarization following long lasting tetanic activation of hippocampal pyramidal cell. Br. Res. 275: 159–163, 1983.CrossRefGoogle Scholar
  14. 14.
    Heinemann, V., Konnerth, A., Pumain, R., Wadman, W., Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue. Adv. in Neurol. 44:641–661, 1986.Google Scholar
  15. 15.
    Hempel, F., Kariman, K., Saltyman, H., Redox transitions in melochondria of cat cerebral cortex with seizures and hemorrhagic hypotension. Am. J. Physiol. 238: H249 - H256, 1980.PubMedGoogle Scholar
  16. 16.
    Jobsis, F., O’Connor, M., Vitale, A., Verman, H., Intracellular redox changes in functioning cerebral cortex. I. Metabolic effects of epileptiform activity. J. Neurophys. 34: 750–762, 1971.Google Scholar
  17. 17.
    Jobsis, F., O’Connor, M., Rosenthal, M., VanBuren, J., Fluorometric monitoring of metabolic activity in the intact cerebral cortex. Neurophys. Studied in Man, Amsterdam: Elsevier Press, pp. 18–26, 1972.Google Scholar
  18. 18.
    Jope, R., Morrisett, R., Snead, O., Characterization of lithium potentiation of pilocarpine induced status epilepticus in rats. Exp. Neurol. 91: 471–480, 1986.PubMedCrossRefGoogle Scholar
  19. 19.
    Koyama, I., Amino acids in the colbalt induced epileptogenic and nonepileptogenic cat cortex. Can. J. Physiol. Pharmacol. 50: 740–752, 1972.PubMedCrossRefGoogle Scholar
  20. 20.
    Kreisman, N., Sick, T., Rosenthal, M., Importance of vascular responses in determining cortical oxygenation during recurrent paroxysmal events of varying duration and frequency of repetition. J. of Cerebral Blood Flow and Metabolism, 3: 330–338, 1983.CrossRefGoogle Scholar
  21. 21.
    Kreisman, N., Rosenthal, M., LaManna, J., Sick, T., Cerebral oxygenation during recurrent seizures. Adv. in Neurol. 34:231–239, 1983.Google Scholar
  22. 22.
    Kryjevic, K., Morris, M., Ropert, A., Changes in free calcium ion concentration recorded inside hippocampal pyramidal cells in situ. Br. Res. 374: 1–11, 1986.CrossRefGoogle Scholar
  23. 23.
    Lancaster, B. and Adams, P., Calcium-dependent current generating the afterhyperpolarization of hippocampal. J. Neurophysiol. 55: 1268–1281.Google Scholar
  24. 24.
    Lewis, D., O’Connor, M., Schuette, W., Oxidative metabolism during recurrent seizures in the penicillin treated hippocampus. Electroenceph. Clin Neurophysiol. 36: 347–356, 1974.PubMedCrossRefGoogle Scholar
  25. 25.
    Lothman, E., Collins, R., Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates. Br. Res. 218: 299–318, 1981.CrossRefGoogle Scholar
  26. 26.
    Louval, J. and Heinemann, V., Changes in Ca and K and neuronal activity during oenanthotoxin induced epilepsy in cat sensory motor cortex. Electroenceph. and Clinical Neurophysiol. 56: 457–466, 1983.CrossRefGoogle Scholar
  27. 27.
    Lux, H., Heinemann, V., Dietze, I., Ionic changes and alterations in the size of the extracellular space during epileptic activity. Adv. in Neurol. 44:619–639, 1986.Google Scholar
  28. 28.
    Lux, H. and Heinemann, V., Ionic changes during experimentally induced seizure activity. Clin. Neurophysiol. (EEG sup. No. 34) Cobb, W., Van Duijn, H. (eds). pp. 289–297, 1978.Google Scholar
  29. 29.
    Meldrum, B., Cell damage in epilepsy and the role of calcium in cytotoxicity. Adv. in Neurol. 44:849–855, 1986.Google Scholar
  30. 30.
    O’Connor, M., Origin of labile NADH tissue fluorescence oxygen and physiological function. Prof. Info. Lib. Ed. Jobsis, F.F. 90–99, 1977.Google Scholar
  31. 31.
    O’Connor, M., Herman, C., Rosenthal, J., Jobsis, F., Intracellular redox changes preceeding onset of epileptiform activity in intact cat hippocampus. J. Neurophysiol. 35: 471–483, 1972.PubMedGoogle Scholar
  32. 32.
    Perry, T. and Hansen, S., Amino acid abnormalities in epileptogenic foci. Neurology 31: 872–876, 1981.PubMedCrossRefGoogle Scholar
  33. 33.
    Powis, D., Does Na-K ATPase play a role in the regulation of neurotransmitter release by prejunctional receptors? Biochem. Pharmacol. 30: 2389–2397, 1981.PubMedCrossRefGoogle Scholar
  34. 34.
    Prince, D., Connors, B., Bernardo, L., Mechanisms underlying interictal-ictal transformation. Adv. in Neurol. 44:177–187, 1986.Google Scholar
  35. 35.
    Rapport, R., Harris, A., Lockard, J., Clar, A., Na KAT Pase in serially excised segments of epileptic monkey cortex. Epilepsia 22: 123–129, 1981.PubMedCrossRefGoogle Scholar
  36. 36.
    Rinaldi, P., Fairchild, M., Kusske, J., Perfusion with lithium modfies neurophysiological responses in the CAl region of the hippocampal slice preparation. Br. Res. 375: 302–312, 1986.CrossRefGoogle Scholar
  37. 37.
    Rosenthal, M. and Jobsis, F., Intracellular redox changes in functioning cerebral cortex. II. Effects of direct cortical stimulation. J. Neurophysiol. 34: 750–762, 1971.PubMedGoogle Scholar
  38. 38.
    Schmidt, C., Kety, S., Pennes, H., The gaseous metabolism of the brain of the monkey. Am. J. Physiol. 143: 33–52, 1945.Google Scholar
  39. 39.
    Sherwin, A. and vanGelder, N., Amino acid and catecholamine markers of metabolic abnormalities in human focal epilepsy. Adv. in Neurol. 44:1011–1032, 1986.Google Scholar
  40. 40.
    Seisjo, B. and Wieloch, T., Epileptic brain damage: pathophysiology and neuro-chemical pathology. Adv. in Neurol. 44:813–847, 1986.Google Scholar
  41. 41.
    Somjen, G., Extracellular potassium in the mammalian central nervous system. Ann. Rev. Physiol. 41: 159–177, 1979.CrossRefGoogle Scholar
  42. 42.
    Somjen, G., Aitken, P., Giacchino, J., McNamara, J., Interstitial ion concentrations and paroxysmal discharges in hippocampal formation and spinal cord. Adv. in Neurol. 44:663–680, 1986.Google Scholar
  43. 43.
    Stahl, W. and Harris, W., NA-K ATPase: Structure function and interactions with drugs. Adv. in Neurol. 44:681–693, 1986.Google Scholar
  44. 44.
    Sutton, L. and O’Connor, M., Unpublished data.Google Scholar
  45. 45.
    Vern, B., Schuette, W., Mutsuga, Whitehouse, W., Effects of ischemia on the removal of extracellular potassium in cat cortex during penlylenetetrazol seizures. Epilepsia 20: 711–724, 1979.PubMedCrossRefGoogle Scholar
  46. 46.
    Vizi, E., NA, K-activated adenosinetriphosphatase as a trigger in transmitter release. Neuroscience 3: 367–387, 1978.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Michael O’Connor
    • 1
  1. 1.Department of NeurosurgeryGraduate HospitalPhiladelphiaUSA

Personalised recommendations