Brain Metabolism and Pathophysiology of Human Epilepsy

  • Jerome EngelJr.


This conference brings together clinical and basic scientists from a variety of disciplines to share their concepts of a specific aspect of epilepsy: the initiation and spread of epileptic seizures. Cross fertilization of this sort has not always occurred spontaneously and the literature can be inconsistent, or even contradictory, when data from different disciplines are compared. However, disagreements can often be accounted for by semantic inconsistencies and difficulties in relating phenomena from one experimental animal model to another, or to the various forms of human epilepsy. Consequently, it is useful at the outset to identify points of semantic confusion, and to discuss the necessity for recognizing differences between various experimental and clinical epileptic phenomena. Following this, observations on human interictal and ictal cerebral metabolism can be placed in perspective, drawing on other clinical and animal data to suggest some mechanisms of seizure initiation and spread.


Epileptic Seizure Partial Seizure Partial Epilepsy Complex Partial Seizure Epileptogenic Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackermann, R., Engel, J. Jr., Baxter, L. Positron emission tomography and autoradiographic studies of glucose utilization following electroconvulsive seizures in humans and rats. Ann. N.Y. Acad. Sci. 462: 263–269, 1986.CrossRefPubMedGoogle Scholar
  2. 2.
    Ackermann R., Engel, J. Jr., Phelps, M. Identification of seizure-mediating brain structures with the deoxyglucose method: studies of human epilepsy with positron computed tomography, and animal seizure models with contact autoradiography. In: Basic Mechanism of the Epilepsies, A. Delgado-Escueta., A. Ward, D. Woodbury, R. Porter (eds). New York: Raven Press, pp. 921–934, 1984.Google Scholar
  3. 3.
    Ackermann, R., Finch, D., Babb, T., Engel, J. Jr. Increased glucose metabolism during long-duration recurrent inhibition of hippocampal pyramidal cells. J. Neurosci. 4: 251–264, 1984.PubMedGoogle Scholar
  4. 4.
    Babb, T. GABA mediated inhibition in the Ammon’s horn and presubiculum in human temporal lobe epilepsy: GAD immunocytochemistry. In: Neurotransmitters, Seizures and Epilepsy III, G. Nistico, P. Morselli, K. Lloyd, R. Fariello, J. Engel, Jr. (eds). New York: Raven Press, pp. 296–302, 1986.Google Scholar
  5. 5.
    Babb, T. and Crandall, P. Epileptogenesis of human limbic neurons in psychomotor epileptics. Electroencephalogr. Clin. Neurophysiol. 40: 225–243, 1976.Google Scholar
  6. 6.
    Bancaud, J. and Chauvel, P. Commentary: Acute and chronic intracranial recording and stimulation with depth electrodes. In: Surgical Treatment of the Epilepsies, J. Engel, Jr. (ed). New York: Raven Press, pp. 289–296, 1987.Google Scholar
  7. 7.
    Ben-Ari Y., Tremblay E., Riche D., Ghilini G., Naquet R. Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazol: Metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neurosci. 6: 1361–1391, 1981.CrossRefGoogle Scholar
  8. 8.
    Bernardi, S., Trimble, M., Frackowiak, R., Wise, R., Jones, T. An interictal study of partial epilepsy using positron emission tomography and the oxygenl5 inhalation technique. J. Neurol. Neurosur. Psychiat. 46: 473–477, 1983.Google Scholar
  9. 9.
    Cherlow, D., Dymond A., Crandall, P., Walter, R., Serafetinides, E. Evoked response and after-discharge thresholds to electrical stimulation in temporal lobe epileptics. Arch. Neurol. 34: 527–531, 1977.CrossRefPubMedGoogle Scholar
  10. 10.
    Chugani, H., Ackermann, R., Chugani, D., Engel, J. Jr. Opioid-induced epileptogenic phenomena: Anatomical, behavioral, and electroencephalographic features. Ann. Neurol. 15: 361–368, 1984.CrossRefPubMedGoogle Scholar
  11. 11.
    Chugani, H., Mazziotta, J., Engel, J. Jr., Phelps, M. The Lennox-Gastaut syndrome: metabolic subtypes determined by 18F-fluoro-2-deoxyglucose positron emission tomography. Ann. Neurol. 21: 4–13, 1987.CrossRefPubMedGoogle Scholar
  12. Kindling of neuroanatomic pathways during recurrent focal penicillin seizures. Brain Res. 150: 503–518, 1978.CrossRefPubMedGoogle Scholar
  13. 13.
    Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia 22: 489–501, 1981.CrossRefGoogle Scholar
  14. 14.
    Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for classification of epilepsies and epileptic syndromes. Epilepsia 26: 268–275, 1985.CrossRefGoogle Scholar
  15. 15.
    Dreifuss, F. Status epilepticus. In: Pediatric Epileptology, F. Dreifuss (ed). Boston: John Wright-PSG, Inc., pp. 221–230, 1983.Google Scholar
  16. 16.
    Engel, J. Jr. The use of PET scanning in epilepsy. Ann. Neurol. 15: S180 - S191, 1984.CrossRefPubMedGoogle Scholar
  17. 17.
    Engel, J. Jr. A practical guide for routine EEG studies in epilepsy. J. Clin. Neuro. Physiol. 1: 109–142, 1984.Google Scholar
  18. 18.
    Engel, J. Jr. New concepts of the epileptic focus. In: The Epileptic Focus, H. Wieser, E. Speckmann, J. Engel, Jr. (eds). London: John Libbey Eurotext Ltd. pp. 83–94, 1987.Google Scholar
  19. 19.
    Engel, J. Jr. Approaches to localization of the epileptogenic lesion. In: Surgical Treatment of the Epilepsies, J. Engel, Jr. (ed). New York: Raven Press, pp. 75–95, 1987.Google Scholar
  20. 20.
    Engel, J. Jr. Ackermann, R., Caldecott-Hazard, S., Kuhl, D. Epileptic activation of antagonistic systems may explain paradoxical features of experimental and human epilepsy: A review and hypothesis. In: Kindling 2, J. Wada, (ed). New York: Raven Press, pp. 193–211, 1981.Google Scholar
  21. 21.
    Engel, J. Jr., Brown, W., Kuhl, D., Phelps, M., Mazziotta, J., Crandall, P. Pathological findings underlying focal temporal lobe hypometabolism in partial epilepsy. Ann. Neurol. 12: 518–528, 1982.CrossRefPubMedGoogle Scholar
  22. 22.
    Engel, J. Jr. and Cahan, L. Potential relevance of kindling to human partial epilepsy. In: Kindling 3, J. Wada (ed). New York: Raven Press, pp. 37–54, 1986.Google Scholar
  23. 23.
    Engel, J. Jr., Caldecott-Hazard, S., Chugani, H., Ackermann, R. Neuropeptides, seizures and epilepsy. In: Advances in Epileptology: XV Epilepsy International Symposium, R. Porter, R. Mattson, A. Ward, M. Dam (eds). New York: Raven Press, pp. 25–30, 1984.Google Scholar
  24. 24.
    Engel, J. Jr., Kuhl, D., Phelps, M. Patterns of human local cerebral glucose metabolism during epileptic seizures. Science 218: 64–66, 1982.CrossRefPubMedGoogle Scholar
  25. 25.
    Engel, J. Jr., Kuhl, D., Phelps, M., Crandall, P. Comparative localization of epileptic foci in partial epilepsy by PCT and EEG. Ann. Neurol. 12: 529–537, 1982.CrossRefPubMedGoogle Scholar
  26. 26.
    Engel, J. Jr., Kuhl, D., Phelps, M., Mazziotta, J. Interictal cerebral glucose metabolism in partial epilepsy and its relation to EEG changes. Ann. Neurol. 12: 510–517, 1982.Google Scholar
  27. 27.
    Engel J. Jr., Kuhl, D., Phelps, M., Rausch, R., Nuwer, M. Local cerebral metabolism during partial seizures. Neurology 33: 400–413, 1983.CrossRefPubMedGoogle Scholar
  28. 28.
    Engel, J. Jr., Lubens, P., Kuhl, D., Phelps, M. Local cerebral metabolic rate for glucose during petit mal absences. Ann. Neurol. 17: 121–128, 1985.CrossRefPubMedGoogle Scholar
  29. 29.
    Engel, J. Jr., Rausch, R., Lieb, J., Kuhl, D., Crandall, P. Correlation of criteria used for localizing epileptic foci in patients considered for surgical therapy of epilepsy. Ann. Neurol. 9: 215–224, 1981.CrossRefPubMedGoogle Scholar
  30. 30.
    Engel, J. Jr. and Wilson, C. Evidence for enhanced synaptic inhibition in human epilepsy. In: Neurotransmitters, Seizures, and Epilepsy, III, P. Morselli, G. Nistico, K. Lloyd, R. Fariello, J. Engel, Jr. (eds). New York: Raven Press, pp. 1–13, 1986.Google Scholar
  31. 31.
    Engel J. Jr., Wolfson L., Brown L. Anatomical correlates of electrical and behavioral events related to amygdaloid kindling. Ann. Neurol. 3: 538–544, 1978.CrossRefPubMedGoogle Scholar
  32. 32.
    Fromm, G. The role of inhibitory mechanisms in staring spells. J. Clin. Neurophysiol. 3: 297–311, 1986.CrossRefPubMedGoogle Scholar
  33. 33.
    Gloor, P. Electrophysiological studies on the connections of the amydaloid nucleus in the cat Part II: The electrophysiological properties of the amygdaloid projection system. Electroencephalogr. Clin. Neurophysiol. 7: 243–264, 1955.CrossRefPubMedGoogle Scholar
  34. 34.
    Gloor, P. Comment: Approaches to localization of the epileptogenic lesion. In: Surgical Treatment of the Epilepsies, J. Engel, Jr. (ed). New York: Raven Press, pp. 97100, 1987.Google Scholar
  35. 35.
    Gloor, P., Quesney, L., Zumstein H. Pathophysiology of generalized penicillin epilepsy in the cat: the role of cortical and subcortical structures. II. Topical applications of penicillin to the cerebral cortex and to subcortical structures. Electroencephalogr. Clin. Neurophysiol. 43: 79–94, 1977.CrossRefPubMedGoogle Scholar
  36. 36.
    Goddard, G., McIntyre, D., Leech, C. A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol. 25: 295–330, 1969.CrossRefPubMedGoogle Scholar
  37. 37.
    Guberman, A., Gloor, P., Sherwin, A. Response of generalized penicillin epilepsy in the cat to ethosuximide and diphenylhydantoin. Neurology 25: 758–764, 1975.CrossRefGoogle Scholar
  38. 38.
    Gur, R., Sussman, N., Alavi, A., Gur, R., Rosen, A., O’Connor, M., Goldberg, H., Greenberg, J., Reivich, M. Positron emission tomography in two cases of childhood epileptic encephalopathy (Lennox-Gastaut Syndrome). Neurology 32: 1191–1194, 1982.CrossRefPubMedGoogle Scholar
  39. 39.
    Handforth, A. and Ackermann, R. Functional 2-deoxyglucose mapping of progressive states of status epilepticus induced by amygdala stimulation in rat. Neurosci. Abst. 11: 1318, 1985.Google Scholar
  40. 40.
    Jennett, B. Epilepsy After Non-Missile Head Injuries. Chicago: William Heinemann, second edition, p. 179, 1975.Google Scholar
  41. 41.
    Jobe, P. and Laird, H. Neurotransmitter abnormalities as determinants of seizure susceptibility and intensity in the genetic models of epilepsy. Biochem. Pharmacol. 30: 3137–3144, 1981.CrossRefPubMedGoogle Scholar
  42. 42.
    Johnson, D., Davies, H., Crawford, R. Pharmacological and biochemical studies in the epileptic fowl. Fed. Proc., 38: 2417–2423, 1979.PubMedGoogle Scholar
  43. 43.
    Kellaway, P., Frost, J., Hrachovy, R. Infantile spasms. In: Antiepileptic Drug Therapy in Pediatrics, P. Morselli, C. Pippenger, J. Penry (eds). New York: Raven Press, pp. 115–136, 1983.Google Scholar
  44. 44.
    Kellaway, P. and Mizrahi, E. Neonatal Seizures. In: Epilepsy, Electroclinical Syndromes, H. Luders, R. Lesser (eds). Berling: Springer-Verlag, pp. 13–47, 1986.Google Scholar
  45. 45.
    Killam, K., Naquet, R., Bert, J. Paroxysmal responses to intermittent light stimulation in a population of baboons (Papio papio). Epilepsia 7: 215–219, 1966.CrossRefGoogle Scholar
  46. 46.
    Kuhl, D., Engel, J. Jr., Phelps, M., Selin, C. Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3. Ann. Neurol. 8: 348–360, 1980.CrossRefPubMedGoogle Scholar
  47. 47.
    Lieb, J., Engel, J. Jr., Babb, T. Interhemispheric propagation time of human hippocampal seizures. 1. Relationship to surgical outcome. Epilepsia 27: 286–293, 1986.CrossRefPubMedGoogle Scholar
  48. 48.
    Loskata, W., Lomax, P., Rich, S. The gerbil as model for the study of the epilepsies. Epilepsia 15: 109–119, 1974.CrossRefGoogle Scholar
  49. 49.
    Marcus, E. Experimental models of petit mal epilepsy. In: Experimental Models of Epilepsy–A Manual for the Laboratory Worker, D. Purpura, J. Penry, D. Tower, D. Walter, (eds). New York: Raven Press, pp. 13–146, 1972.Google Scholar
  50. 50.
    Matsumoto, H. and Ajmone-Marsan, C. Cortical cellular phenomena in experimental epilepsy: Interictal manifestations. Exp. Neurol. 9: 286–304, 1964.CrossRefPubMedGoogle Scholar
  51. 51.
    Matsumoto, H. and Ajmone-Marsan, C. Cortical cellular phenomena in experimental epilepsy: Ictal manifestations. Exp. Neurol. 9: 305–326, 1964.CrossRefPubMedGoogle Scholar
  52. 52.
    McIntyre D., Nathanson D., Edson, N. A new model of partial status epilepticus based on kindling. Brain Res. 250: 53–63, 1982.CrossRefPubMedGoogle Scholar
  53. 53.
    Pinel, J. and Rovner, L. Experimental epileptogenesis: kindling induced epilepsy in rats. Exp. Neurol. 58: 190–202, 1978.CrossRefPubMedGoogle Scholar
  54. 54.
    Prince, D. The depolarization shift in “epileptic” neurons. Exp. Neurol. 21: 467–485, 1968.CrossRefPubMedGoogle Scholar
  55. 55.
    Purpura, D. Intracellular studies of synaptic organizations in the mammalian brain. In: Structure and Function of Synapses, G. Pappas, D. Purpura, (eds). New York: Raven Press, pp. 257–302, 1972.Google Scholar
  56. 56.
    Purpura, D., Penry, J., Tower, D., Woodbury, D. Walter, R. (eds). Experimental Models of Epilepsy - A Manual for the Laboratory Worker. New York: Raven Press, p. 615, 1972.Google Scholar
  57. 57.
    Quesney L., Gloor P., Kratzenberg E., Zumstein H. Pathophysiology of generalized penicillin epilepsy in the cat: the role of cortical and subcortical structures. I. Systemic applications of penicillin. Electroencephalogr. Clin. Neurophysiol. 42: 640–655, 1977.CrossRefPubMedGoogle Scholar
  58. 58.
    Racine, R. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electrocencephalogr. Clin. Neurophysiol. 32: 281–294, 1972.CrossRefGoogle Scholar
  59. 59.
    Racine, D., Burnham, W., Gartner, J. First trial motor seizures triggered by amygdaloid stimulation in the rat. Electroencephalogr. Clin. Neurophysiol. 35: 487494, 1973.Google Scholar
  60. 60.
    Ribak, C., Harris, A., Vaughn, J., Roberts, E. Inhibitory GABAergic nerve terminals decrease at sites of focal epilepsy. Science 205: 211–214, 1979.CrossRefPubMedGoogle Scholar
  61. 61.
    Riley, T. and Roy, A. (eds). Pseudoseizures. Baltimore: Williams and Wilkins, p. 231, 1982.Google Scholar
  62. 62.
    Roger, J., Dravet, C., Bureau, M., Dreifuss, F., Wolf, P. (eds). Epileptic Syndromes in Infancy, Childhood and Adolescence. London: John Libbey, p. 335, 1985.Google Scholar
  63. 63.
    Scheibel, M., Crandall, P., Scheibel, A. The hippocampal-dentate complex in temporal lobe epilepsy: A golgi study. Epilepsia 15: 55–80, 1974.CrossRefPubMedGoogle Scholar
  64. 64.
    Seyfried, T. and Glaser, G. A review of mouse mutants as genetic models of epilepsy. Epilepsia 26: 143–150, 1985.CrossRefPubMedGoogle Scholar
  65. 65.
    Soper, H., Strain, G., Babb, T. Chronic alumina temporal lobe seizures in monkeys. Exp. Neurol. 62: 99–121, 1978.CrossRefPubMedGoogle Scholar
  66. 66.
    Theodore, W., Brooks, R., Sato, S., et al. Positron emission tomography in generalized seizures. Neurology 35: 684–690, 1985.CrossRefPubMedGoogle Scholar
  67. 67.
    Theodore, W., Newmark, M., Sato, S., De LaPaz, R., DiChiro, G., Brooks, R., Patronas, N., Kessler, R., Manning, R., Margolin, R. Channing, M., Porter, R. (18)F-fluorodeoxyglucose positron emission computed tomography in refractory complex partial seizures. Ann. Neurol. 14: 429–437, 1984.CrossRefGoogle Scholar
  68. 68.
    Tuff, L., Racine, R., Adamec, R. The effects of kindling on GABA- mediated inhibition in the dentate gyrus of the rat. I. Paired-pulse depression. Brain Res. 277: 79–90, 1983.CrossRefPubMedGoogle Scholar
  69. 69.
    Tuff, L., Racine, R., Mishra, R. The effects of kindling on GABA-mediated inhibition in the dentate gyrus of the rat. II. Receptor binding. Brain Res. 277: 91–98, 1983.CrossRefPubMedGoogle Scholar
  70. 70.
    Urca, G., Frenk, H., Liebeskind J., Taylor A. Morphine and enkephalin: analgesic and epileptic properties. Science 197: 83–86, 1977.CrossRefPubMedGoogle Scholar
  71. 71.
    Van Hoesen, G. The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci. 5: 345–350, 1982.CrossRefGoogle Scholar
  72. 72.
    Wada, J. (ed). Kindling. New York: Raven Press, p. 260, 1976.Google Scholar
  73. 73.
    Wada, J. (ed). Kindling 2. New York: Raven Press, p. 361, 1981.Google Scholar
  74. 74.
    Wada, J. (ed). Kindling 3. New York: Raven Press, p. 551, 1986.Google Scholar
  75. 75.
    Wada, J., Mizoguchi, T., Osawa, T. Secondary generalized convulsive seizures induced by daily electrical stimulation in rhesus monkeys. Neurology 28: 1026–1036, 1978.CrossRefPubMedGoogle Scholar
  76. 76.
    Wada, J. and Osawa, T. Spontaneous recurrent seizure state induced by daily electrical amygdaloid stimulation in Senegalese baboons, Papio papio. Neurology 26: 273–286, 1976.CrossRefGoogle Scholar
  77. 77.
    Wada, J. and Sato, M. Generalized convulsive seizure induced by daily electrical stimulation of the amygdala in cats: Correlative electrographic features. Neurology 24: 565–574, 1974.CrossRefPubMedGoogle Scholar
  78. 78.
    Westmoreland, B. and Klass D. A distinctive rhythmic EEG discharge of adults. Electroencephalogr. Clin. Neurophysiol. 51: 186–191, 1981.Google Scholar
  79. 79.
    Westrum L., White L., Ward A. Jr. Morphology of the experimental epileptic focus. J. Neurosurg. 21: 1033–1046, 1964.CrossRefPubMedGoogle Scholar
  80. 80.
    Wieser, H. Electroclinical Features of the Psychomotor Seizure. London: Butter-worths, p. 242, 1983.Google Scholar
  81. 81.
    Willmore, L., Seypert, G., Mumson, J., Hurd, R. Chronic focal epileptiform discharges induced by injection of iron into rat and cat cortex. Science 200: 1501–1503, 1978.CrossRefPubMedGoogle Scholar
  82. 82.
    Wilson, C., Isokawa-Akesson, M., Babb, T., Engel, J. Jr., Cahan, L., Crandall, P. A comparative view of local and interhemispheric limbic pathways in humans: an evoked potential analysis. In: Fundamental Mechanisms of Human Brain Function, J. Engel Jr., G. Ogemann, H. Luders, P. Williamson (eds). New York: Raven Press, pp. 27–38, 1987.Google Scholar
  83. 83.
    Wolfson, L., Sakurada, O., Sokoloff, L. Effects of butyrolactone on local cerebral glucose utilization in rat. J. Neurochem. 29: 777–783, 1977.CrossRefPubMedGoogle Scholar
  84. 84.
    Woodbury, D. Applications to drug evaluations. In: Experimental Models of Epilepsy–A Manual for the Laboratory Worker. D. Purpura, J. Penry, D. Woodbury, R. Walter (eds). New York: Raven Press, pp. 557–584, 1972.Google Scholar
  85. 85.
    Woodbury, D. Convulsive drugs: Mechanisms of action. In: Antiepileptic Drugs, Mechanisms of Action, Advances in Neurology, Vol. 27, G. Glaser, J. Penry, M. Woodbury, (eds). New York: Raven Press, pp. 305–313, 1980.Google Scholar
  86. 86.
    Wyler, R. Synchrony between cortical neurons in normal and epileptogenic cortex of monkey. Epilepsia 27: 171–176, 1986.CrossRefPubMedGoogle Scholar
  87. 87.
    Yamamoto, Y., Ochs, R., Gloor, P., et al. Patterns of CBF and focal energy metabolic changes in relation to electroencephalographic abnormality in the inter-ictal phase of partial epilepsy. In: Current Problems in Epilepsy: Cerebral Blood Flow, Metabolism and Epilepsy, M. Baldy-Moulinier, D. Ingvar, B. Meldrum (eds). London: John Libbey, pp. 51–62, 1983.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Jerome EngelJr.
    • 1
    • 2
  1. 1.Department of Neurology and AnatomyReed Neurological Research CenterLos AngelesUSA
  2. 2.The Brain Research InstituteUCLA School of MedicineLos AngelesUSA

Personalised recommendations