Defects Characterization in GaAs-GaAlAs Superlattices

  • Dominique Vuillaume
  • Didier Stiévenard
Part of the NATO ASI Series book series (NSSB, volume 183)


GaAs-GaAIAs superlattices(SL) have been recently developed, stimulated by their interest in modern electronics. In most SL the GaAlAs layer is large (more than 40 Å) so that the tunneling through the barrier is weak and the SL behaves as an array of quantum wells (QW). However, progress in molecular beam epitaxy (MBE) has now made possible the formation of ultrathin GaAlAs layer where the abrupt interface is of the order of an atomic monolayer1,2. In such a case, the conduction electrons tunnel through the GaAlAs barrier and propagate along the direction perpendicular to the layers, in a superlattice conduction miniband common to both barrier and well layers. This behavior of the electronic transport has been recently observed3, and electrical characterization techniques such as capacitance-voltage (C-V), capacitance transient (C-t) and Deep Level Transient Spectroscopy (DLTS) have been successfully applied to SL4,5,6,7, in order to probe the materials.


Space Charge Region Deep Level Transient Spectroscopy Bulk GaAs Deep Level Transient Spectroscopy Spectrum Bulk Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Weisbuch, R.C. Miller, R. Dingle, A.C. Gossard and W. Wiegmann, Solid Stat. Commun. 38:709 (1981).ADSCrossRefGoogle Scholar
  2. 2.
    B. Deveaud, J.Y. Emery, A. Chomette, B. Lambert and M. Baudet, Appl. Phys. Lett. 45:1078 (1984).ADSCrossRefGoogle Scholar
  3. 3.
    H.L. Störmer, J. P. Eisenstein, A.C. Gossard, W. Wegmann and K. Baldwin, Phys. Rev. Lett. 56:85 (1986).ADSCrossRefGoogle Scholar
  4. 4.
    D. Stievenard, D. Vuillaume, J.C. Bourgoin, B. Deveaud and A. Regreny, Europhysics Letters 2:331 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    F. Sillon, A. Mauger, J.C. Bourgoin, B. Deveaud, A. regreny and D. Stievenard, “Defects in semiconductors,” H.J. Von. Bardeleben, ed., Trans Tech Publications, Aedermannsdorf (1986).Google Scholar
  6. 6.
    A. Mauger, S.L. Feng and J.C. Bourgoin, Appl. Phys. Lett. 51:27 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    J.C. Bourgoin, A. Mauger, D. Stievenard, B. Deveaud and A. Regreny, Solid State Commun. 62:757 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    J.C. Bourgoin and M. Lannoo, this conferenceGoogle Scholar
  9. 9.
    D. Pons and J.C. Bourgoin, Phys. C: Solid State Phys. 18:3839 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    S. Loualiche, G. Guillot, A. Nouailhat and J.C. Bourgoin Phys. Rev. B 26:7090 (1982).ADSCrossRefGoogle Scholar
  11. 11.
    D.V. Lang, R.A. Logan and L.C. Kimmerling, Phys. Rev. B 15:4874 (1977).ADSCrossRefGoogle Scholar
  12. 12.
    D. Stievenard, D. Vuillaume, S.L. Feng and J.C. Bourgoin, “Proceedings of MSS3” to be publishedGoogle Scholar
  13. 13.
    J.M. Langer and H. Heinrich, Phys. Rev. Lett. 55:1414 (1985).ADSCrossRefGoogle Scholar
  14. 14.
    B. Plot, B. Deveaud, B. Lambert, A. Chomette and A. Regreny, J. Phys. C: Solid State Phys. 19:4279 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    H. Kroemer, W.Y. Chien, J.S. Harris and D.D. Edwall Appl. Phys. Lett. 36:293 (1980).ADSCrossRefGoogle Scholar
  16. 16.
    S.L. Feng, J.C. Bourgoin, D. Stievenard and D. Vuillaume, unpublished.Google Scholar
  17. 17.
    J.C. Bourgoin and M. Lannoo, “Point defects in semiconductors”, Springer Verlag, Berlin (1983).CrossRefGoogle Scholar
  18. 18.
    The reader can found more detailled information in: D. Pons, Appl. Phys. Lett. 37:413 (1980),ADSCrossRefGoogle Scholar
  19. 18a.
    D. Stievenard, M. Lannoo and J.C. Bourgoin, Solid State Electron. 28:485 (1985).ADSCrossRefGoogle Scholar
  20. 18b.
    D. Stievenard and D. Vuillaume, J. Appl. Phys. 60:973 (1986). and in Ref. 17.ADSCrossRefGoogle Scholar
  21. 19.
    D.V. Lang, J. Appl. Phys. 45:3023 (1974).ADSCrossRefGoogle Scholar
  22. 20.
    Two other filtering method are currently used involving a one-phase or two-phases lock-in amplifier. Details can be found in: A. Mircea, A. Mitonneau, J. Allais and M. Jaros, Phys. Rev. B 16:3665 (1977).ADSCrossRefGoogle Scholar
  23. 20.
    D. Pons, Thesis, Paris (1979).Google Scholar
  24. 20.
    D. Pons, P.M. Mooney and J.C. Bourgoin, J. Appl Phys. 51:2038 (1980).ADSCrossRefGoogle Scholar
  25. 21.
    D. Pons, Appl. Phys. Lett. 37:413 (1980).ADSCrossRefGoogle Scholar
  26. 22.
    D. Stievenard, J.C. Bourgoin and M. Lannoo, J. Appl. Phys. 55:1477 (1984).ADSCrossRefGoogle Scholar
  27. 23.
    B. Deveaud, B. Lambert, B. Plot, A. Chomette, A. Regreny, J.C. Bourgoin and D. Stievenard, J. Appl. Phys. to be publieshedGoogle Scholar
  28. 24.
    B. Deveaud, A. Regreny, D. Stievenard, D. Vuillaume, J.C. Bourgoin and A. Mauger, “Proceeding of the ICPS 18” to be published.Google Scholar
  29. 25.
    W.I. Wang, E.E. Mendez and F. Stern, Appl. Phys. Lett. 45:639 (1984).ADSCrossRefGoogle Scholar
  30. 26.
    M.O. Watanabe, J. Yoshida, M. Mashita, T. Nakanisi and H. Hojo, J. Appl. Phys. 57:5340 (1985).ADSCrossRefGoogle Scholar
  31. 27.
    G.B. Noris, D.C. Look, W. Kopp, J. Klem and H. Morkoc, Appl. Phys. Lett. 47:423 (1985).ADSCrossRefGoogle Scholar
  32. 28.
    H.Z. Chen, H. Wang, A. Ghaffari, H. Morkoc and A. Yariv, Appl. Phys. Lett. 51:990 (1987)ADSCrossRefGoogle Scholar
  33. 29.
    P.M. Mooney, R. Fisher and H. Morkoc, J. Appl. Phys. 57:1928 (1985)ADSCrossRefGoogle Scholar
  34. 30.
    A. Okuma, S. Misawa and S. Yoshida, Surf. Sci. 174:331 (1986)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Dominique Vuillaume
    • 1
  • Didier Stiévenard
    • 1
  1. 1.Laboratoire de Physique des Solides, UA 253, Institut Supérieur d’Electronique du NordCNRSLille CedexFrance

Personalised recommendations