Advertisement

Interface Characterization of GaInAs-InP Superlattices Grown by Low Pressure Metalorganic Chemical Vapor Deposition

  • Manijeh Razeghi
  • Philippe Maurel
  • Franck Omnes
Part of the NATO ASI Series book series (NSSB, volume 183)

Abstract

Very high quality Ga0.47In0.53 As-InP heterojunctions, quantum wells and superlattices have been grown by low pressure metalorganic chemical vapor deposition (LP-MOCVD). Excitation spectroscopy shows evidence of strong and well resolved exciton peaks in the luminescence and excitation spectra of GalnAs-InP quantum wells. Optical absorption shows roomtemperature exciton in GalnAs-InP superlattices (M. Razeghi et al., 1983)1. Quantum wells as thin as 8 A with a photoluminescence linewidth of 9 meV have been grown.

Keywords

Quantum Hall Effect Negative Differential Resistance Photoluminescence Excitation Spectrum MOCVD Reactor Cyclotron Resonance Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Razeghi, J. Nagle, Ph Maure1, F. Omnes, J.P. Pocholle, Appl. Phys. Lett. 49:17 (1986).Google Scholar
  2. 2.
    M. Razeghi, A. Tardella, R.A. Danies, A.P. Long, M.J. Kelly, E. Britton, C. Boothrojd, W.M. Stobbs, Elect. Letters, Vol. 23, n° 3:117 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    M. Razeghi, Technology for Chemicals and Materials for Electronic (Howells, London) (1984).Google Scholar
  4. 4.
    M. Razeghi, Ph Maurel, F. Omnes, M. Defour, Submitted to Apllied Physic Letters (1987).Google Scholar
  5. 5.
    P.J. Dean, M.S. Skolnick, J. Appl. Phys., 54:346 (1983).ADSCrossRefGoogle Scholar
  6. 6.
    W.J. Bartels, W. Nijman, J. Cryst. Growth, 44:518 (1978).ADSCrossRefGoogle Scholar
  7. 7.
    P. Voisin, G. Bastard, M. Voos, Phys. Rev., B29:935 (1984).ADSGoogle Scholar
  8. 8.
    M. Razeghi, In Feszhörperprobleme, volume XXV, Vieweg, Braunschweig, (1985).Google Scholar
  9. 9.
    A.M. Huber, M. Razeghi and G. Morillot, Inst. Phys. Conf. Ser. n° 74:223 (1984).Google Scholar
  10. 10.
    P.S. Chemla, D.A.B. Millers, P.W. Smith, A.C. Gossard and W. Wiegmann IEEE, J.Q. Electron QE-20: 265 (1984).ADSCrossRefGoogle Scholar
  11. 11.
    M. Razeghi, J.P. Duchemin, Semiconductor Science and Technology, (1986).Google Scholar
  12. 12.
    G. Bastard, Appl. Phys. Lett., 43:6 (1983).CrossRefGoogle Scholar
  13. 13.
    M. Razeghi, J.P. Duchemin, J.C. Portal, L. Dinowski, G. Remeni, R.J. Nicholas, A. Briggs, Appl. Phys. Lett., 48:712 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    D.C. Tsui, H.L. Stormer, A.C. Gossard, Appl. Phys. Lett., 48:1559 (1983).Google Scholar
  15. 15.
    T. Ando, A. Fowler and F. Stern, Rev. Mod. Phys., 54:437 (1982).ADSCrossRefGoogle Scholar
  16. 16.
    Ph. Maurel, M. Razeghi, Y. Guldner, J.P. Vieren, To be published in the J. of Semiconductor Science and Technology, (1987).Google Scholar
  17. 17.
    M. Razeghi, Ph. Maurel, A. Tardella, L. Durowski, D. Gauthier, J.C. Portal, J. Appl. Phys., 60:2453 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Manijeh Razeghi
    • 1
  • Philippe Maurel
    • 1
  • Franck Omnes
    • 1
  1. 1.Laboratoire Matériaux Exploratoires/LCROrsay CedexFrance

Personalised recommendations