Molecular Beam Epitaxy of Ga0.99Be0.01As for very high Speed Heterojunction Bipolar Transistors

  • J. L. Liévin
  • F. Alexandre
  • C. Dubon-Chevallier
Part of the NATO ASI Series book series (NSSB, volume 183)


In this paper, we present the molecular beam epitaxy of very high p-type doping levels into GaAs using beryllium as a dopant. Very low resistivity, multilayer-compatible material is achieved with doping levels as high as 2 × 1020cm-3. We study the beryllium incorporation during growth, and discuss, based on experimental results, how such layers can significantly improve the speed of heterojunction bipolar transistors.


Molecular Beam Epitaxy Doping Level Reflection High Energy Electron Diffraction Current Gain High Doping Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Ilegems, J. Appl. Phys. 48 (1977), 1278.ADSCrossRefGoogle Scholar
  2. [2]
    J.N. Miller, D.M. Collins, N.J. Noll, J.S. Kofol, Electronic Materials Conference (1983), unpublished.Google Scholar
  3. [3]
    P. Enquist, L. Lunardi, G.W. Wicks, L.F. Eastman, Int. Conf. on Molecular Beam Epitaxy (1984).Google Scholar
  4. [4]
    J.L. Liévin, Thèse de Doctorat, Université de Paris XI (1986), unpublished.Google Scholar
  5. [5]
    J.L. Liévin, F. Alexandre, Electron. Lett. 21 (1985), 413.ADSCrossRefGoogle Scholar
  6. [6]
    R. Sacks, H. Shen, Appl. Phys. Lett. 47 (1985), 374.ADSCrossRefGoogle Scholar
  7. [7]
    D.L. Miller, P.M. Asbeck, J. Appl. Phys. 57 (1985), 1816.ADSCrossRefGoogle Scholar
  8. [8]
    J.H. Neave, P.J. Dobson, B.A. Joyce, J. Zangh, Appl. Phys. Lett. 47 (1985), 100.ADSCrossRefGoogle Scholar
  9. [9]
    J.M. Van Hove, P.R. Pukite, P.I. Cohen, J. Vac. Sci. Technol. B3 (1985), 563.Google Scholar
  10. [10]
    A. Madhukar, S.V. Ghaisas, Appl. Phys. Lett. 47 (1985), 247.ADSCrossRefGoogle Scholar
  11. [11]
    T. Murotani, S. Shimanoe, S. Mitsui, Journ. of Cryst. Growth 54 (1978), 302.CrossRefGoogle Scholar
  12. [12]
    For a recent review, see N. Moll, in Proceedings IEEE/Cornell Conf. on High Speed Semicond. Dev. and Circ. (1985), 35.Google Scholar
  13. [13]
    H. Kroemer, Proc. IEEE 70 (1982), 13.ADSCrossRefGoogle Scholar
  14. [14]
    S.M. Sze, Physics of Semiconductor Devices, 2nd Ed., Wiley-Interscience (1981).Google Scholar
  15. [15]
    J.L. Liévin, C. Dubon-Chevallier, F. Alexandre, G. Le Roux, J. Dangla, D. Ankri, IEEE Electron. Dev. Lett. EDL-7 (1986), 129.CrossRefGoogle Scholar
  16. [16]
    R.J. Malik, F. Capasso, R.A. Stall, R.A. Kiehl, R.W. Ryan, R. Wunder, G.G. Bether, Appl. Phys. Lett. 46 (1985), 600.ADSCrossRefGoogle Scholar
  17. [17]
    F. Capasso and R.A. Kiehl, J. Appl. Phys. 58 (1985), 1366.ADSCrossRefGoogle Scholar
  18. [18]
    J.F. Palmier, C. Minot, J.L. Liévin, F. Alexandre, J.C. Harmand, J. Dangla, C. Dubon-Chevallier, D. Ankri, Appl. Phys. Lett. 49 (1986), 1260.ADSCrossRefGoogle Scholar
  19. [19]
    For a description of the method, see B. Akamatsu, P. Henoc, A.C. Papadopoulo, in Scanning Electron Microscopy IV (1983), 1579.Google Scholar
  20. [20]
    R. People and J.C. Bean, Appl. Phys. Lett. 47 (1985),322;ADSCrossRefGoogle Scholar
  21. [20a]
    R. People and J.C. Bean, Appl. Phys. Lett. 49 (1986), 229.Google Scholar
  22. [21]
    J.L. Liévin and C.G. Fonstad, accepted for publication in Appl. Phys. Lett., oct. 1987.Google Scholar
  23. [22]
    H.C. Casey, F. Stern, J. Appl. Phys. 47 (1976), 631.ADSCrossRefGoogle Scholar
  24. [23]
    M.C. Chang, P.M. Asbeck, K.C. Wang, G.J. Sullivan, N.H. Sheng, J.A. Higgins, D.L. Miller, IEEE Electron. Dev. Lett. EDL-8 (1987), 303.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. L. Liévin
    • 1
  • F. Alexandre
    • 1
  • C. Dubon-Chevallier
    • 1
  1. 1.Centre National d’Etude des TélécommunicationsBagneuxFrance

Personalised recommendations