Optical Measurements of Acceptor Concentration Profiles at GaAs/GaAlAs Quantum Well Interfaces

  • M. H. Meynadier
Part of the NATO ASI Series book series (NSSB, volume 183)


There has been in the recent years an impressive amount of studies of low dimensional semiconductor systems such as quantum wells (QWs), superlattices and modulation-doped heterojunctions. The importance of doping such structures for device applications has very early led to both theoretical [1–4] and experimental [5–7] works on shallow impurities, showing the impurity states in quasi-2 dimensional systems to possess specific properties unencountered in bulk materials. In particular, the binding energies of impurities are found theoretically to vary with well thicknesses and impurity position within the QW.


Growth Axis Excitonic Line Excitation Power Density Fermi Golden Rule Impurity Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Bastard, Phys.Rev.B 24, 4714 (1981).ADSCrossRefGoogle Scholar
  2. [2]
    C. Mailhot, Y.C. Chang and T.C. McGill, Phys.Rev.B 26, 4449 (1982).ADSCrossRefGoogle Scholar
  3. [3]
    R.L. Greene and K.K. Bajaj, Solid State Commun. 45, 825 (1983).ADSCrossRefGoogle Scholar
  4. [4]
    W.T. Masselink, Y.C. Chang and H. Morkoc, Phys.Rev.B 28, 7373 (1983).ADSCrossRefGoogle Scholar
  5. [5]
    B.V. Shanabrook and J.C. Comas, Surface Sci. 142, 504 (1984).ADSCrossRefGoogle Scholar
  6. [6]
    R.C. Miller, J.Appl.Phys. 56, 1136 (1984).ADSCrossRefGoogle Scholar
  7. [7]
    R.C. Miller, W.T. Tsang and O. Munteanu, Appl.Phys.Lett. 44, 374 (1982).ADSCrossRefGoogle Scholar
  8. [8]
    C. Weisbuch, R.C. Miller, R. Dingle, A.C. Gossard and W. Wiegmann, Solid State Commun. 37, 621 (1981).CrossRefGoogle Scholar
  9. [9]
    G. Bastard, C. Delalande, M.II. Meynadier, P.M. Frijlink and M. Voos, Phys.Rev.B 29,7042 (1984).ADSCrossRefGoogle Scholar
  10. [10]
    P.M. Petroff, R.C. Miller, A.C. Gossard and W. Wiegmann, Appl.Phys.Lett. 44, 217 (1984).ADSCrossRefGoogle Scholar
  11. [11]
    G. Bastard, Phys.Rev.B 24, 5693 (1981).ADSCrossRefGoogle Scholar
  12. [12]
    Landolt-Bornstein, Vol. 17a (springer-Verlag, Berlin Heidelberg New York, 1982).Google Scholar
  13. [13]
    M.H. Meynadier, J.A. Brum, C. Delalande, M. Voos, F. Alexandre and J.L. Lievin, J. Appl.Phys. 58, 4307 (1985).ADSCrossRefGoogle Scholar
  14. [14]
    M.H. Meynadier, C. Delalande, G. Bastard, M. Voos, F. Alexandre and J.L. Lievin, Phys.Rev.B 31, 5539 (1985).ADSCrossRefGoogle Scholar
  15. [15]
    following R.L. Greene and K.K. Bajaj (ref.3) with the Luttinger parameters γ1 = 7.65 and γ2 = 2.41.Google Scholar
  16. [16]
    T.J. Drummond, J. Klem, D. Arnold, R. Fischer, R.E. Thome, W.G. Lyons and H. Morkoc, Appl.Phys.Lett. 42, 615 (1983).ADSCrossRefGoogle Scholar
  17. [17]
    W.T. Masselink, Y.L. Sun, R. Fischer, TJ. Drummond, Y.C. Chang, M.V. Klein and H. Morkoc, J.Vac.Sci.Technol.B 2, 117 (1984).CrossRefGoogle Scholar
  18. [18]
    P. Dawson and K.K. Woodbridge, Appl.Phys.Lett. 45, 435 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • M. H. Meynadier
    • 1
  1. 1.Bell Communications ResearchRed BankUSA

Personalised recommendations