Properties of Impurity States In n-i-p-i Superlattice Structures

  • Gottfried H. Döhler
Part of the NATO ASI Series book series (NSSB, volume 183)


The primary effect of the static potential of the impurity atoms in doping superlattices is the formation of space charge induced quantum wells. In most of our previous studies of n-i-p-i doping superlattices we have focussed our interest to the remarkable features which result from the spatial separation between electrons and holes, such as tunability of the electronic structure, electron-hole recombination lifetimes, increased by many orders of magnitude compared with those of bulk semiconductors, or huge optical nonlinearities. In this lecture we will concentrate on the point defect aspects of impurities in doping superlattices. Topics to be discussed will include the impurity band formation by shallow (donor) and less shallow (acceptor) impurities over the whole concentration range from very low to high concentrations. We propose various n-i-p-i and hetero n-i-p-i structures which should be idealy suite for optical studies of impurity- and Hubbard bands, and for electrical investigations of the density of states of the conductivity in these bands as a function of (tunable) carrier and dopant density. In particular it is expected that these structures represent unique systems for investigations of the Mott-Hubbard transition in two dimensions.


Impurity State Heavy Hole Impurity Band Doping Profile Doping Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.H. Dehler, Phys. Stat. Sol. 52, 79 (1972)ADSCrossRefGoogle Scholar
  2. 2.
    G.H. Dehler, Phys. Stat. Sol. (b) 52., 533 (1972)ADSCrossRefGoogle Scholar
  3. 3.
    For a review of the early work see, for instance: G.H. Döhler and K. Ploog, in: Synthetic Modulated Structure Materials, L.L. Chang and B.C. Giessen, Eds. (Academic Press, N.Y. 1985), 163Google Scholar
  4. 3a.
    K. Ploog and G.H. Döhler, Advances in Physics 32., 285 (1983)ADSCrossRefGoogle Scholar
  5. 3b.
    G.H. Döhler, in: The Technology and Physics of Molecular Beam Epitaxy, E.H.C. Parker, Ed. (Plenum, N.Y., 1985) 233Google Scholar
  6. 4.
    For a review of the recent work see. for instance: G.H. Döhler, IEEE QE-22, 1682 (1986)Google Scholar
  7. 4a.
    G.H. Döhler, CRC Review in Solid State and Materials Sciences 13, 97 (1986)ADSCrossRefGoogle Scholar
  8. 5.
    P.P. Ruden and G.H. Döhler, Phys. Rev. B27, 3538 (1983)ADSGoogle Scholar
  9. 6.
    G.H. Döhler and P.P. Ruden, Surface Science 142, 474 (1984)CrossRefGoogle Scholar
  10. 7.
    P.P. Ruden and G.H. Döhler, Solid State Commun. 45., 23 (1983)ADSCrossRefGoogle Scholar
  11. 8.
    P.P. Ruden and G.H. Döhler, Phys. Rev. B27, 354 7 (1983)Google Scholar
  12. 9.
    P.P. Ruden and G.H. Döhler, Proceedings of the 17th Intern. Conf. on the Physics of Semiconductors, J.D. Chadi and W.H. Harrison, Eds. (Springer, N.Y., 1985) 535Google Scholar
  13. 10.
    G.H. Döhler, Superlattices and Microstructures 1, 279 (1985)ADSCrossRefGoogle Scholar
  14. 11.
    G.H. Döhler, J. of Non-Crystalline Solids 77 & 78, 1041 (1985)CrossRefGoogle Scholar
  15. 12.
    G.H. Döhler, R.A. Street, and P.P. Ruden, Surface Science 174, 240 (1986)CrossRefGoogle Scholar
  16. 13.
    G.H. Döhler, NSF Workshop on Optical Nonlinearities, Fast Phenomena and Signal Processing, N. Peyghambarian, Ed. (Tucson, AZ, 1986) 292Google Scholar
  17. 14.
    F. Crowne, T.L. Reinecke, and B.V. Shanabrook, Proceedings of 17th Intern. C onf. on the Physics of Semiconductors, J.D. Chadi and W.H. Harrison, Eds. (Springer, N.Y., 1985) 363Google Scholar
  18. 15.
    G.H. Döhler, unpublishedGoogle Scholar
  19. 16.
    W. Rehm, P. Ruden, G.H. Döhler, and K. Ploog, Phys. Rev. B 28, 5937 (1983)ADSCrossRefGoogle Scholar
  20. 17.
    Ref. für Akzeptor Welenflut (Bassani?, P.R.’s Thesis), 18. Hopfield (DA Pair)Google Scholar
  21. 19.
    U. Heim, O. Röder, H.J. Queisser, and M. Pilkuhn, J. of Luminescence 1,2, 542 (1970)Google Scholar
  22. 20.
    A. Raymond, this workshopGoogle Scholar
  23. 21.
    J.L. Robert, A. Raymond, L. Konczewicz, C. Bousquet, W. Zawadzki, F. Alexandre, I.M. Masson, J.P. Andre, and P.M Frijlink, Phys. Rev. B33, 5935 (1986)ADSGoogle Scholar
  24. 22.
    The mixing of light- and heavy-hole subbands has been treated, for instance, by U. Ekenberg and M. Altarelli, Phys. Rev. B30, 3569 (1984)ADSGoogle Scholar
  25. 22a.
    E. Bangert and G. Landwehr, Superlattices Microstruct. 1, 363 (1985)ADSCrossRefGoogle Scholar
  26. 22b.
    D.A. Broido and L.J. Sham, Phys. Rev. B31, 888 (1985)ADSGoogle Scholar
  27. 22c.
    Y.C. Chang and J.N. Schulman, Phys. Rev. B31, 2069 (1985)ADSGoogle Scholar
  28. 23.
    R.A. Street, G.H. Döhler, J.N. Miller, and P.P. Ruden, Phys. Rev. B33, 7043 (1986)ADSGoogle Scholar
  29. 24.
    N.F. Mott and E.A. Davis, Electronic Process in Non-Crystalline Materials, 2nd ed. (Oxford, 1979)Google Scholar
  30. 25.
    G.P. Srivastava, this workshopGoogle Scholar
  31. 26.
    G.D. Döhler, G. Hasnain, and J.N. Miller, Appl. Phys. Lett. 49, 704 (1986)ADSCrossRefGoogle Scholar
  32. 27.
    C.J. Chang-Hasnain, G. Hasnain, N.M. Johnson, G.H. Döhler, J.N. Miller, J.R. Whinnery, and A. Dienes, Appl. Phys. Letter 50, 915 (1987)ADSCrossRefGoogle Scholar
  33. 28.
    E. Abrahams, P.W. Anderson, D.C. Licciardello, and T.V. Ramakrishnan, Phys. Rev. Lett. 42., 67 3 (1979)Google Scholar
  34. 29.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958)ADSCrossRefGoogle Scholar
  35. 30.
    See for instance: “Anderson Localization, Y. Nagaoka, Ed. (Springer, New York, 19 82)Google Scholar
  36. 31.
    R.A. Davies, C.C. Dean, and M. Pepper, Surface Science 142, 25 (1984)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Gottfried H. Döhler
    • 1
  1. 1.Institut für Technische PhysikUniversität ErlangenErlangenGermany

Personalised recommendations