Advertisement

Studies of the DX Centre in Heavily Doped n+GaAs

  • L. Eaves
  • J. C. Portal
  • D. K. Maude
  • T. J. Foster
Part of the NATO ASI Series book series (NSSB, volume 183)

Abstract

The effect of hydrostatic pressure on the electrical properties of MBE-grown GaAs layers heavily doped in Si with Sn is described. It is shown how these measurements provide fundamental information about the DX centre in n GaAs. Shubnikov-de Haas measurements show that as increasing pressure is applied, electrons are trapped out from the Γ conduction band minimum of GaAs into the localised DX states, with an accompanying increase in carrier mobility. Optical illumination at T≲100K causes persistent photoconductivity in which free carriers are released back into the conduction band with an accompanying fall in mobility. The results show that the DX centre produces a resonant donor level between the Γ- and L- conduction band minima at a concentration comparable with the doping level. The energy and occupancy of the DX level are calculated using Fermi-Dirac statistics. For the Si-doped samples, comparison with local vibrational mode measurements indicate that the DX level can be identified with the simple substitional donor, SiGa. In the heaviest doped samples (n ≳ 1 × 1019 cm-3) we conclude that the DX level is partially occupied at 300 K and atmospheric pressure, thus acting to limit the free carrier concentration. Our results are discussed in terms of other recent work on the DX centre in heavily doped GaAs.

Keywords

Carrier Concentration Pressure Coefficient Donor Level Free Carrier Concentration Conduction Band Minimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. V. Lang and R. A. Logan, Phys. Rev. Lett. 39:635 (1977).ADSCrossRefGoogle Scholar
  2. 1a.
    See also D. V. Lang, R. A. Logan and M. Jaros, Phys. Rev. B 19:349 (1987).Google Scholar
  3. 2.
    R. J. Nelson, Appl. Phys. Lett. 31:351 (1977).ADSCrossRefGoogle Scholar
  4. 3.
    P. M. Mooney, E. Calleja, S. L. Wright and M. Heiblum, Proceedings of the International Conference on Defects in Semiconductors, ed. H. J. von Bardeleben, Material Science Forum 10–12:4 17–422 (1986).Google Scholar
  5. 4.
    M. Mizuta, M. Tachikawa, H. Kukimoto and S. Minomura, Japan. J. Appl. Phys. 24:L143 (1985).ADSCrossRefGoogle Scholar
  6. 5.
    T. N. Theis, Proceedings of the International Conference on Defects in Semiconductors, ed. H. J. von Bardeleben, Material Science Forum 10–12:393–398 (1986).Google Scholar
  7. 6.
    M. Tachikawa, M. Mizuta, H. Kukimoto and S. Minomura, Japan. J. Appl. Phys. 24:L821 (1985).ADSCrossRefGoogle Scholar
  8. 7.
    T. N. Theis and S. L. Wright, Appl. Phys. Lett. 48: 1374 (1986).ADSCrossRefGoogle Scholar
  9. 8.
    A. K. Saxena; Solid State Electronics 25: 127 (1982).ADSCrossRefGoogle Scholar
  10. 9.
    H. P. Hjalmarson and T. J. Drummond, Appl. Phys. Lett. 48:656 (1986).ADSCrossRefGoogle Scholar
  11. 10.
    J. C. M. Henning and J. P. M. Ansems, Semicond. Sci. and Technol. 2:1 (1987). See also Proceedings of the International Conference on Defects in Semiconductors, ed. H. J. von Bardeleben, Material Science Forum 10–12:429–4 34.ADSCrossRefGoogle Scholar
  12. 11.
    J. H. Neave, P. J. Dobson, J. J. Harris, P. Dawson and B. A. Joyce, Appl. Phys. A 32:195 (1983).ADSCrossRefGoogle Scholar
  13. 12.
    D. K. Maude, J. C. Portal, L. Dmowski, T. Foster, L. Eaves, M. Nathan, M. Heiblum, J. J. Harris and R. B. Beall, Phys. Rev. Lett. 59:815 (1987).ADSCrossRefGoogle Scholar
  14. 13.
    J. S. Blakemore, J. Appl. Phys. 53 (10):R123 (1982).ADSCrossRefGoogle Scholar
  15. 14.
    L. G. Shantharama, A. R. Adams, C. N. Ahmad and R. J. Nicholas, J. Phys. C: Sol. State Phys. 17:4429 (1984).ADSCrossRefGoogle Scholar
  16. 15.
    A. Raymond, J. L. Robert and C. Bernard, J. Phys. C 12:2289 (1979).ADSCrossRefGoogle Scholar
  17. 16.
    R. A. Abram, G. J. Rees and B. L. H. Wilson, Advances in Physics 27: 799 (1978).ADSCrossRefGoogle Scholar
  18. 17.
    J. Leloupe, H. Djerassi, J. H. Albany and J. B. Mullin, J. Appl. Phys. 49 (6):3359, June 1978.ADSCrossRefGoogle Scholar
  19. 18.
    T. N. Theis, P. M. Mooney and S. L. Wright, preprint.Google Scholar
  20. 19.
    J. Maguire, R. Murray, R. C. Newman, R. B. Beall and J. J. Harris, Appl. Phys. Lett. 50 (9): 516 (1987).ADSCrossRefGoogle Scholar
  21. 20.
    R. Murray and R. C. Newman; unpublished, private communication.Google Scholar
  22. 21.
    J. C. Nabity, M. Stavola, J. Lopata, W. C. Dautremont-Smith, C. W. Tu and S. J. Pearton, Appl. Phys. Lett. 50:921 (1987).ADSCrossRefGoogle Scholar
  23. 22.
    M. F. Li, P. Y. Yu, E. R. Weber and W. Hansen, Appl. Phys. Lett. 51:349 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • L. Eaves
    • 1
  • J. C. Portal
    • 2
    • 3
  • D. K. Maude
    • 1
  • T. J. Foster
    • 1
  1. 1.Department of PhysicsUniversity of NottinghamNottinghamUK
  2. 2.Dept. de Genie PhysiqueINSAToulouseFrance
  3. 3.SNCI-CNRSGrenobleFrance

Personalised recommendations