Advertisement

The Maintenance of Transposable Elements in Natural Populations

  • Brian Charlesworth
Part of the Basic Life Sciences book series (BLSC, volume 47)

Abstract

Models of the maintenance of transposable elements in randomly mating host populations are reviewed. It is shown that the data on the distribution of copy numbers between individuals are largely concordant with what is expected on the basis of the Mendelian transmission of elements. The role of regulation of rates of transposition, and of various modes of natural selection, in maintaining an equilibrium in copy numbers in the face of transpositional increase in copy number is discussed. Tests for the role of selection against insertional mutations and against chromosome rearrangements induced by exchange between homologous elements located at nonhomologous chromosome locations are discussed. Reasons for expecting elements to accumulate in chromosome regions where crossing over is restricted are discussed, and data suggesting the existence of such an effect are described. Theory and data on the probability distribution of element frequencies at individual chromosomal sites are described. It is concluded that the available population data are consistent with the notion that element abundances are largely controlled by the interaction of transpositional increase in copy number with opposing forces.

Keywords

Natural Population Transposable Element Insertional Mutation Chromosomal Site Hybrid Dysgenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aquadro, C.F., S.F. Deese, M.M. Bland, C.H. Langley, and C.C. Laurie-Ahlberg (1986) Molecular population genetics of the alcohol denydrogenase gene region of Drosophila melanogaster. Genetics 114:1165–1190.Google Scholar
  2. 2.
    Bregliano, J.-C., and M.G. Kidwell (1983) Hybrid dysgenesis determinants. In Mobile Genetic Elements, J.A. Shapiro, ed. Academic Press, New York, pp. 363–410.Google Scholar
  3. 3.
    Bridges, C.B. (1935) Salivary chromosome maps. J. Hered. 26:60–64.Google Scholar
  4. 4.
    Brookfield, J.F.Y. (1986) Population biology of transposable elements. Phil. Trans. Roy. Soc. Lond. B. 312:217–226.CrossRefGoogle Scholar
  5. 5.
    Brown, A.H.D. (1979) Enzyme polymorphism in natural populations. Theor. Pop. Biol. 15:1–42.CrossRefGoogle Scholar
  6. 6.
    Bucheton, A., M. Simonelig, C. Vaury, and M. Crozatier (1986) Sequences similar to the I transposable element involved in IR, hybrid dysgenesis occur in other Drosophila species. Nature 322:650–652.CrossRefGoogle Scholar
  7. 7.
    Bulmer, M.G. (1980) The Mathematical Theory of Quantitative Genetics. Oxford University Press, Oxford.Google Scholar
  8. 8.
    Cameron, J.R., E.Y. Loh, and R.W. Davis (1979) Evidence for transposition of dispersed repetitive DNA families in yeast. Cell 16:739–751.PubMedCrossRefGoogle Scholar
  9. 9.
    Campbell, A. (1983) Transposons and their evolutionary significance. In Evolution of Genes and Proteins, M. Nei and R.K. Koehn, eds. Sinauer, Sunderland, Mass., pp. 258–279.Google Scholar
  10. 10.
    Carpenter, A.T.C., and B.S. Baker (1982) On the control of the distribution of meiotic exchange in Drosophila. Genetics 101:81–84.Google Scholar
  11. 11.
    Chao, L., C. Vargas, B.B. Spear, and E.C. Cox (1983) Transposable elements as mutator genes in evolution. Nature 303:633–635.PubMedCrossRefGoogle Scholar
  12. 12.
    Charlesworth, B. (1985) The population genetics of transposable elements. In Population Genetics and Molecular Evolution, T. Ohta and K. Aoki, eds. Springer Verlag, Berlin, pp. 213–232.Google Scholar
  13. 13.
    Charlesworth, B., and D. Charlesworth (1983) The population dynamics of transposable elements. Genet. Res. 42:1–27.CrossRefGoogle Scholar
  14. 14.
    Charlesworth, B., and C.H. Langley (1986) The evolution of self-regulated transposition of transposable elements. Genetics 112:359–383.PubMedGoogle Scholar
  15. 15.
    Daniels, S., L.D. Strasbaugh, L. Ehrman, and R. Armstrong (1984) Sequences homologous to P elements occur in Drosophila paulistorum. Proc. Natl. Acad. Sci., USA 81:6794–6797.PubMedCrossRefGoogle Scholar
  16. 16.
    Davis, P.S., M.W. Shen, and B.H. Judd (1987) Asymmetrical pairings of transposons in and proximal to the white locus of Drosophila account for four classes of regularly occurring exchange products. Proc. Natl. Acad. Sci., USA 84:174–178.PubMedCrossRefGoogle Scholar
  17. 16a.
    Doolittle, W.F., and C. Sapienza (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–607.PubMedCrossRefGoogle Scholar
  18. 17.
    Engels, W.R. (1981) Hybrid dysgenesis in Drosophila and the stochastic loss hypothesis. Cold Spring Harb. Symp. Quant. Biol. 45:561–566.PubMedCrossRefGoogle Scholar
  19. 18.
    Engels, W.R. (1986) On the evolution and population genetics of hybrid-dysgenesis causing transposable elements in Drosophila. Phil. Trans. Roy. Soc. Lond. B. 312:205–215.CrossRefGoogle Scholar
  20. 19.
    Engels, W.R., and C.R. Preston (1984) Formation of chromosome rearrangements by P factors. Genetics 107:657–678.PubMedGoogle Scholar
  21. 20.
    Ewens, W.J. (1972) The sampling theory of selectively neutral alleles. Theor. Pop. Biol. 3:87–112.CrossRefGoogle Scholar
  22. 21.
    Fedoroff, N.V. (1983) Controlling elements in maize. In Mobile Genetic Elements, J.A. Shapiro, ed. Academic Press, New York, pp. 1–63.Google Scholar
  23. 22.
    Felsenstein, J., and S. Yokoyama (1976) The evolutionary advantage of recombination. II. Individual selection for recombination. Genetics 83:845–859.PubMedGoogle Scholar
  24. 23.
    Finnegan, D.J., and D.H. Fawcett (1986) Transposable elements in Drosophila melanogaster. Oxf. Surv. Eukar. Genes 3:1–62.Google Scholar
  25. 24.
    Fitzpatrick, B.J., and J.A. Sved (1986) High level of fitness modifiers induced by hybrid dysgenesis in Drosophila melanogaster. Genet. Res. 48:89–94.CrossRefGoogle Scholar
  26. 25.
    Ginzburg, L.R., P.M. Bingham, and S. Yoo (1984) On the theory of speciation induced by transposable elements. Genetics 107:331–341.PubMedGoogle Scholar
  27. 26.
    Goldberg, M.L., J.-Y. Shen, W.J. Gehring, and M.M. Green (1983) Unequal crossing-over associated with asymmetrical synapsis between nomadic elements of the Drosophila genome. Proc. Natl. Acad. Sci., USA 80:5017–5021.PubMedCrossRefGoogle Scholar
  28. 27.
    Golding, G.B., C.F. Aquadro, and C.H. Langley (1986) Sequence evolution within populations under multiple types of mutation. Proc.Natl. Acad. Sci., USA 83:427–431.PubMedCrossRefGoogle Scholar
  29. 28.
    Grindley, N.D.F., and R.R. Reed (1985) Transpositional recombination in prokaryotes. Ann. Rev. Biochem. 54:863–896.PubMedCrossRefGoogle Scholar
  30. 29.
    Haigh, J. (1978) The accumulation of deleterious genes in a population—Müller’s ratchet. Theor. Pop. Biol. 14:251–267.CrossRefGoogle Scholar
  31. 30.
    Hartl, D.L., and D.E. Dykhuizen (1984) The population genetics of Escherichia coli. Ann. Rev. Genet. 18:31–68.Google Scholar
  32. 31.
    Hartl, D.L., and S.A. Sawyer (1988) Multiple correlations among insertion elements in the genome of natural isolates of Escherichia coli (in press).Google Scholar
  33. 32.
    Hartl, D.L., and S.A. Sawyer (1988) Why do unrelated insertion sequences occur together in the genome of Escherichia coli? (in press).Google Scholar
  34. 33.
    Hartl, D.L., M. Medhora, L. Green, and D.E. Dykhuizen (1986) The evolution of DNA sequences in Escherichia coli. Phil. Trans. Roy. Soc. Lond. B. 312:191–204.CrossRefGoogle Scholar
  35. 34.
    Hickey, D.A. (1982) Selfish DNA: A sexually transmitted parasite. Genetics 101:519–531.PubMedGoogle Scholar
  36. 35.
    Hilliker, A.J., R. Appels, and A. Schalet (1980) The genetic analysis of D. melanogaster heterochromatin. Cell 21:607–619.PubMedCrossRefGoogle Scholar
  37. 36.
    Kaplan, N.L., and J.F.Y. Brookfield (1983) The effect on homozygosity of selective differences between sites of transposable elements. Theor. Pop. Biol. 23:273–280.CrossRefGoogle Scholar
  38. 37.
    Kaplan, N.L., and J.F.Y. Brookfield (1983) Transposable elements in Mendelian populations. III. Statistical results. Genetics 104:485–495.PubMedGoogle Scholar
  39. 38.
    Kaplan, N.L., T. Darden, and C.H. Langley (1985) Evolution and extinction of transposable elements in Mendelian populations. Genetics 109:459–480.PubMedGoogle Scholar
  40. 39.
    Kidwell, M.G. (1979) Hybrid dysgenesis in Drosophila melanogaster. The relationship between the P-M and I-R interaction systems. Genet.Res. 33:205–217.CrossRefGoogle Scholar
  41. 40.
    Kidwell, M.G. (1983) Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proc. Natl. Acad. Sci., USA 80:1655–1659.PubMedCrossRefGoogle Scholar
  42. 41.
    Kleckner, N. (1981) Transposable elements in prokaryotes. Ann. Rev. Genet. 15:341–404.PubMedCrossRefGoogle Scholar
  43. 42.
    Langley, C.H., and C.F. Aquadro (1987) Restriction map variation in natural populations of Drosophila melanogaster white locus region. Mol. Biol. Evol. 4:651–663.PubMedGoogle Scholar
  44. 43.
    Langley, C.H., E.A. Montgomery, and W.F. Quattlebaum (1982) Restriction map variation in the Adh region of Drosophila. Proc. Natl. Acad. Sci., USA 79:5631–5625.PubMedCrossRefGoogle Scholar
  45. 44.
    Langley, C.H., J.F.Y. Brookfield, and N.L. Kaplan (1983) Transposable elements in Mendelian populations. I. A theory. Genetics 104:457–472.PubMedGoogle Scholar
  46. 45.
    Langley, C.H., E.A. Montgomery, R.H. Hudson, N.L. Kaplan, and B. Charlesworth (1988) On the role of unequal exchange in the containment of transposable element copy number (manuscript in preparation).Google Scholar
  47. 46.
    Leigh Brown, AJ. (1983) Variation at the 87A heat shock locus in Drosophila melanogaster. Proc. Natl. Acad. Sci., USA 80:5350–5354.CrossRefGoogle Scholar
  48. 47.
    Leigh Brown, AJ., and J.E. Moss (1987) Transposition of the I element and copia in natural populations of Drosophila melanogaster. Genet. Res. 49:121–128.CrossRefGoogle Scholar
  49. 48.
    Li, W.-H., C.-C. Luo, and C.-I. Wu (1985) Evolution of DNA sequences. In Molecular Evolutionary Genetics, R.J. MacIntyre, ed. Plenum Press, New York, pp. 1–94.CrossRefGoogle Scholar
  50. 49.
    Lindsley, D.L., and L. Sandier (1977) The genetic analysis of meiosis in female Drosophila. Phil. Trans. Roy. Soc. B. 277:295–312.CrossRefGoogle Scholar
  51. 50.
    Lucchesi, J.C. (1976) Inter-chromosomal effects. In The Genetics and Biology of Drosophila. la, M. Ashburner and E. Novitski, eds. Academic Press, New York, pp. 315–330.Google Scholar
  52. 51.
    Mackay, T.F.C. (1985) Transposable element-induced response to artificial selection in Drosophila melanogaster. Genetics 111:351–374.PubMedGoogle Scholar
  53. 52.
    Mackay, T.F.C. (1986) Transposable element-induced fitness mutations in Drosophila melanogaster. Genet. Res. 48:77–87.CrossRefGoogle Scholar
  54. 53.
    MacGregor, H.C., and S.K. Sessions (1986) The biological significance of variation in satellite DNA and heterochromatin in newts of the genus Triturus: An evolutionary perspective. Phil. Trans. Roy. Soc. Lond. B. 312:243–259.CrossRefGoogle Scholar
  55. 54.
    McClintock, B. (1956) Controlling elements and the gene. Cold Spring Harb. Symp. Quant. Biol. 21:197–216.PubMedCrossRefGoogle Scholar
  56. 55.
    Maynard Smith, J. (1976) Group selection. Quart. Rev. Biol. 51:277–283.CrossRefGoogle Scholar
  57. 56.
    Miklos, G.L.G. (1985) Localized highly repetitive DNA sequences in vertebrate and invertebrate genomes. In Molecular Evolutionary Genetics, R.J. Maclntyre, ed. Plenum Press, New York, pp. 240–321.Google Scholar
  58. 57.
    Miklos, G.L.G., M.J. Healy, P. Pain, A.J. Howells, and R.J. Russell (1984) Molecular genetic studies on the euchromatin-heterochromatin junction in the X chromosome of Drosophila melanogaster. I. A cloned entry point near to the uncoordinated (unc) locus. Chromosoma 89:218–227.PubMedCrossRefGoogle Scholar
  59. 58.
    Mikus, M.D., and T.D. Petes (1982) Recombination between genes located on nonhomologous chromosomes in Saccharomyces cerevisiae. Genetics 101:369–404.PubMedGoogle Scholar
  60. 59.
    Montgomery, E.A., and C.H. Langley (1983) Transposable elements in Mendelian populations. II. Distribution of three copia-like elements in a natural population. Genetics 104:473–483.PubMedGoogle Scholar
  61. 60.
    Montgomery, E.A., B. Charlesworth, and C.H. Langley (1987) A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet. Res 49:31–41.PubMedCrossRefGoogle Scholar
  62. 61.
    Mukai, T., and O. Yamaguchi (1974) The genetic structure of natural populations of Drosophila. Genetics 82:63–82.Google Scholar
  63. 62.
    Muller, H.J. (1964) The relation of recombination to mutational advance. Mut. Res. 1:2–9.CrossRefGoogle Scholar
  64. 63.
    Nevers, P., and H. Saedler (1977) Transposable genetic elements as agents of instability and chromosomal rearrangements. Nature 268:109–115.PubMedCrossRefGoogle Scholar
  65. 64.
    O’Hare, K., and G.M. Rubin (1983) Structures of p transposable elements of Drosophila melanogaster and their sites of insertion and excision. Cell 34:25–35.PubMedCrossRefGoogle Scholar
  66. 65.
    Ohta, T. (1981) Population genetics of selfish DNA. Nature 292:648–649.PubMedCrossRefGoogle Scholar
  67. 66.
    Ohta, T. (1983) Theoretical study on the accumulation of selfish DNA. Genet. Res. 41:1–16.PubMedCrossRefGoogle Scholar
  68. 67.
    Ohta, T., and M. Kimura (1981) Some calculations on the amount of selfish DNA. Proc. Natl. Acad. Sci., USA 79:1129–1132.CrossRefGoogle Scholar
  69. 67a.
    Orgel, L.E., and F.H.C. Crick (1980) Selfish DNA: The ultimate parasite. Nature 284:604–607.PubMedCrossRefGoogle Scholar
  70. 68.
    Potter, S.S., W.J. Brorein, P. Dunsmuir, and G.M. Rubin (1979) Transposition of elements of the 412, copia, and 297 gene families of Drosophila. Cell 17:415–427.PubMedCrossRefGoogle Scholar
  71. 69.
    Roeder, G.S. (1983) Unequal crossing over between yeast transposable elements. Molec. Gen. Genet. 190:117–121.CrossRefGoogle Scholar
  72. 70.
    Rogers, J. (1985) Origins of repeated DNA. Nature 317:765–766.PubMedCrossRefGoogle Scholar
  73. 71.
    Ronsserray, S., and D. Anxolabehere (1986) Chromosomal distribution of P and I transposable elements in a natural population of Drosophila melanogaster. Chromosoma 94:433–440.CrossRefGoogle Scholar
  74. 72.
    Sawyer, S.A., and D.K. Hartl (1986) Distribution of transposable elements in prokaryotes. Theor. Pop. Biol. 30:1–16.CrossRefGoogle Scholar
  75. 72a.
    Sawyer, S.A., D.E. Dykhuizen, R.F. DuBose, L. Green, T. Mutangadura-Mhlanga, D.F. Wolczyk, and D.L. Hartl (1987) Distribution and abundance of insertion sequences among natural isolates of Escherichia coli. Genetics 115:51–63.Google Scholar
  76. 73.
    Schmid, C.W., and C.-K.J. Shen (1985) The evolution of interspersed repetitive DNA sequences in mammals and other vertebrates. In Molecular Evolutionary Genetics, R.J. MacIntyre, ed. Plenum Press, New York, pp. 323–358.CrossRefGoogle Scholar
  77. 74.
    Shapiro, J.A. (1983) Mobile Genetic Elements. Academic Press, New York.Google Scholar
  78. 75.
    Simmons, M.J., and J.F. Crow (1977) Mutations affecting fitness in Drosophila populations. Ann. Rev. Genet. 11:49–78.PubMedCrossRefGoogle Scholar
  79. 76.
    Singh, R.S., and L.R. Rhomberg (1987) A comprehensive study of genic variation in natural populations of Drosophila melanogaster. I. Estimates of gene flow from rare alleles. Genetics 115:313–322.PubMedGoogle Scholar
  80. 77.
    Steinemann, M. (1982) Multiple sex chromosomes in Drosophila miranda: A system to study the degeneration of a chromosome. Chromosoma 89:59–76.CrossRefGoogle Scholar
  81. 78.
    Strobel, E., P. Dunsmuir, and G.M. Rubin (1979) Polymorphism in the locations of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17:429–439.PubMedCrossRefGoogle Scholar
  82. 78a.
    Syvanen, M. (1984) The evolutionary implication of mobile genetic elements. Ann. Rev. Genet. 18:271–293.PubMedCrossRefGoogle Scholar
  83. 79.
    Uyenoyama, M.K. (1985) Quantitative models of hybrid dysgenesis: Rapid evolution under transposition, extrachromosomal inheritance and fertility selection. Theor. Pop. Biol. 27:176–201.CrossRefGoogle Scholar
  84. 80.
    Wade, M.J. (1978) A critical review of the models of group selection. Quart. Rev. Biol. 3:101–114.Google Scholar
  85. 81.
    Wright, S. (1931) Evolution in Mendelian populations. Genetics 16:97–159.PubMedGoogle Scholar
  86. 82.
    Young, M. (1979) Middle repetitive DNA: A fluid component of the Drosophila genome. Proc. Natl. Acad. Sci., USA 76:6274–6278.PubMedCrossRefGoogle Scholar
  87. 83.
    Yukuhiro, K., K. Harada, and T. Mukai (1985) Viability mutations induced by the P mutations in Drosophila melanogaster. Jap. J. Genet. 60:531–537.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Brian Charlesworth
    • 1
  1. 1.Department of BiologyThe University of ChicagoChicagoUSA

Personalised recommendations