The Use of Neutrons to Show How Proteins Work

  • Anthony A. Kossiakoff
Conference paper
Part of the Basic Life Sciences book series (BLSC, volume 46)


The previous discussions brought up questions about what progress into the understanding of how a protein structure confers its biological activity will be required to make use of the new information that will become available from DNA engineering activities. To fully use the sequence information, two criteria must be met: 1) the protein folding problem has to be solved, and 2) the biological roles of the proteins have to be identified. Although both of these points involve extremely ambitious goals, the protein-folding problem (that is, the rules governing atomic interactions and how they are related to the forming of tertiary structure) is one that will not be fully answered in the near term, given our current knowledge and our previous rate of progress. This is not to say, however, that some general principles of how proteins fold and work have not been established, quite the contrary. Yet, I believe a realistic view is that the long-term solution is a step by step approach, employing new experimental and theoretical methodologies.


Neutron Diffraction Protein Engineering Sheet Structure Peptide Group Tetrahedral Intermediate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. P. Schoenborn, Nature, 224: 143 (1969).CrossRefPubMedGoogle Scholar
  2. 2.
    J. L. Alberi, Brookhaven Symp. Biol. 27 (8): 24 (1975).Google Scholar
  3. 3.
    J. L. Alberi, J. Fischer, V. Radeka, L. C. Rogers, and B. P. Schoenborn, IEEE Trans. Nucl. Sci. NS22 1: 255 (1975).CrossRefGoogle Scholar
  4. 4.
    G. E. Bacon, in: “Neutron Diffraction,” Oxford: Clarendon (1975).Google Scholar
  5. 5.
    B. P. Schoenborn, Brookhaven Symp. Biol. 27 (1): 10 (1976).Google Scholar
  6. 6.
    J. C. Hanson and B. P. Schoenborn, J. Mol. Biol. 153: 117 (1981).CrossRefPubMedGoogle Scholar
  7. 7.
    S. E. V. Phillips and B. P. Schoenborn, Nature 292: 81 (1981).CrossRefPubMedGoogle Scholar
  8. 8.
    A. A. Kossiakoff and S. A. Spencer, Nature 288: 414 (1980).CrossRefPubMedGoogle Scholar
  9. 9.
    A. A. Kossiakoff and S. A. Spencer, Biochemistry 20: 6462 (1981).CrossRefPubMedGoogle Scholar
  10. 10.
    W. W. Bachovchin and J. D. Roberts, J. Am. Chem. Soc. 100–8041(1978).Google Scholar
  11. 11.
    M. W. Hunkapiller, S. H. Smallcombe, D. R. Whitaker and J. H. Richards, Biochemistry 12: 4732 (1973).CrossRefPubMedGoogle Scholar
  12. 12.
    M. W. Hunkapiller, M. D. Forgac and J. H. Richards, Biochemistry 15: 3450 (1976).CrossRefGoogle Scholar
  13. 13.
    R. E. Koeppe and R. M. Stroud, Biochemistry 15–3450 (1976).Google Scholar
  14. 14.
    S. Scheíner and W. H. Lipscomb, Proc. Nat. Acad. Sci. USA 73: 432 (1976).CrossRefGoogle Scholar
  15. 15.
    P. A. Kollman and D. M. Hayes, J. Am. Chem. Soc. 103: 2955 (1981).CrossRefGoogle Scholar
  16. 16.
    S. Nakagawa, H. Umeyama and T. Kudo, Chem. Parm. Bull. 28: 1342 (1980).CrossRefGoogle Scholar
  17. 17.
    G. Robillard and R. G. Shulman, J. Mol. Biol. 86: 541 (1974).CrossRefPubMedGoogle Scholar
  18. 18.
    J. L. Markley and I. B. Ibanez, Biochemistry 17–4627 (1978).Google Scholar
  19. 19.
    M. G. Gruter, R. B. Hawkes, and R. W. Matthews, Science 227: 667 (1979).Google Scholar
  20. 20.
    I. B. Svedsen, Carlsberg. Res. Commun. 41: 237 (1976).Google Scholar
  21. 21.
    C. S. Wright, R. A. Alden, and J. Kraut, Nature 221: 235 (1969).CrossRefPubMedGoogle Scholar
  22. 22.
    J. Drenth, W. G. Hol, J. J.nsonius,, and R. Kockoek, Eur. J. Biochem. 26: 177 (1972).CrossRefPubMedGoogle Scholar
  23. 23.
    R. Bott, B. Katz, M. Ultsch, and A. Kossiakoff, (unpublished results).Google Scholar
  24. 24.
    C. E. Stauffer and D. Etson, J. Biol. Chem. 244: 5333 (1969).PubMedGoogle Scholar
  25. 25.
    J. Wells, D. Powers, R. Bott, B. Katz, M. Ultsch, A. Kossiakoff, S. Powers, R. Adams, H. Heyneker, B. Cunningham, J. Miller, T. Graycar, and D. Estell, in: “Protein Engineering,” D. Oxlander and C. Fox, eds., Alan R. Liss, Inc., New York (1985).Google Scholar
  26. 26.
    D. A. Estell, T. P. Graycar, and J. A. Wells, J. Biol. Chem. 250: 6518 (1985).Google Scholar
  27. 27.
    J. Wells, M. Vasser, and D. Powers, Gene 34: 315 (1985).CrossRefPubMedGoogle Scholar
  28. 28.
    B. P. Schoenborn, Cold Spring. Harbor Symp. Quant. Bio. 36: 569 (1971).CrossRefGoogle Scholar
  29. 29.
    B. P. Schoenborn, in: “Structure and Function of Oxidation Reduction Enzymes,” A. Akeson, and A. Ehreberg, eds., Pergamon, Oxford/New York (1972).Google Scholar
  30. 30.
    B. W. Matthews, J. Mol. Biol. 33: 491 (1968).CrossRefPubMedGoogle Scholar
  31. 31.
    J. A. Rupley, Neutrons in Biology, Basic Life Sciences, Plenum Press, New York, 27: 291 (1984).Google Scholar
  32. 32.
    G. H. Haggis, Bíochim. Biophys. Acta 23: 494 (1957).CrossRefGoogle Scholar
  33. 33.
    M. Praissman and J. A. Rupley, Biochemistry 7: 2431 (1968).CrossRefPubMedGoogle Scholar
  34. 34.
    E. Tuchsen, A. Hvidt, and M. Ottesen, Biochimie 62: 563 (1980).CrossRefPubMedGoogle Scholar
  35. 35.
    M. W. Makinen and A. L. Fink, Ann. Rev. Biophys. Bioeng. 6: 301 (1977).CrossRefGoogle Scholar
  36. 36.
    A. A. Kossiakoff, Nature 296: 713 (1982).CrossRefPubMedGoogle Scholar
  37. 37.
    G. A. Benley, M. Delepierre, C. M. Dobson, R. E. Wedlin, S. A. Mason, and F. M. Poulsen, J. Mol. Biol. 170: 243 (1983).CrossRefGoogle Scholar
  38. 38.
    A. Wlodawer and L. Sjolin, Biochemistry 22: 2720 (1983).CrossRefPubMedGoogle Scholar
  39. 39.
    S. E. V. Phillips, Neutrons in Biology, Basic Life Sciences, Plenum Press, New York, 27: 305 (1984).Google Scholar
  40. 40.
    S. A. Mason, G. A. Bentley, and G. J. McIntyre, Neutrons in Biology, Basic Life Sciences, Plenum Press, New York, 27: 323 (1984).Google Scholar
  41. 41.
    M. M. Teeter and A. A. Kossiakoff, Neutrons in Biology, Basic Life Sciences, Plenum Press, New York, 27: 335 (1984).Google Scholar
  42. 42.
    A. Wlodawer, J. Walter, R. Huber and L. Sjolin, J. Mol. Biol. 180: 301 (1984)CrossRefPubMedGoogle Scholar
  43. 43.
    R. V. Raghavan and B. P. Schoenborn, Neutrons in Biology, Basic Life Sciences, Plenum Press, New York, 27: 247 (1984).Google Scholar
  44. 44.
    A. A. Kossiakoff, Neutrons in Biology, Basic Life Sciences, Plenum Press, New York, 27: 281 (1984).Google Scholar
  45. 45.
    B. Lee and F. M. Richards, J. Mol. Biol. 55: 379 (1971).CrossRefPubMedGoogle Scholar
  46. 46.
    J. Shpungin and A. A. Kossiakoff, Methods in Enzymology 127: 329 (1986).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Anthony A. Kossiakoff
    • 1
  1. 1.Genentech Inc.So. San FranciscoUSA

Personalised recommendations