Ion-Atom Collisions

  • Joseph Macek
Part of the NATO ASI Series book series (NSSB, volume 181)


Ion-atom collisions in the intermediate and high velocity regions typically employ the time evolution matrix U(t, t’). The matrix element U(+∞,0) represents a WKB-type approximation to the Jost matrix J+jα. Condensation channels a in this case represent channels appropriate near the untied atom limit. At low and intermediate velocities molecular bases for the channels a have proven fruitful. At high velocities multiple scattering states describe observed physical phenomena. Ion-atom collisions provide a model where experiment and theory combine to identify condensation channels, reaction coordinates, asymptotic channels and the propagation from condensation to asymptotic regions.


Multiple Scattering Target Nucleus Molecular State Asymptotic Region Outgoing Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Dowek, D. Dhuic, V. Sidis and M. Barat, Phys. Rev. A 26, 746 (1982)ADSCrossRefGoogle Scholar
  2. 1a.
    O. Yenen and D.H. Jaecks, Phys. Rev. A 32, 836 (1985).ADSCrossRefGoogle Scholar
  3. 2.
    O. Yenen and D.H. Jaecks Arnold Russek in Electron and Atomic Collisions, edited by J. Eichler, I.V. Hertel and N. Stolterfoht (North-Holland, Amsterdam, 1983) p. 701.Google Scholar
  4. 3.
    J.F. Reading, A.L. Ford, G.L. Swafford and A. Fitchard, Phys. Rev. A 20, 130 (1979).ADSCrossRefGoogle Scholar
  5. 4.
    L.H. Andersen, P. Hvelplund, H. Knudsen, H.P. Moller, K. Eisner, K.G. Rensfelt and UY. Uggerhog, Phys. Rev. Lett. 57, 2147 (1986).ADSCrossRefGoogle Scholar
  6. 5.
    J.F. Reading and A.L. Ford, Phys. Rev. Lett. 58, 543 (1987).ADSCrossRefGoogle Scholar
  7. 6.
    J.H. McGuire, Phys. Rev. A 36, 1114 (1987).ADSCrossRefGoogle Scholar
  8. 7.
    J.H. McGuire spi Joseph Macek in Electronic and Atomic Collisions, edited by J. Eichler, I.V. Hertel and N. Stolterfoht (Elsevier Science Publishers B.V. 1984) p. 317.Google Scholar
  9. 8.
    U. Fano and A.R.P. Rau, Atomic Collisions and Spectra, (Academic Press Inc., New York, 1986) chapters 7 and 9.Google Scholar
  10. 9.
    W. Lichten, Phys. Rev. 139, 27 (1965).ADSCrossRefGoogle Scholar
  11. 10.
    M. Barat and Wm. Lichten, Phys. Rev. A 6, 211 (1972).ADSCrossRefGoogle Scholar
  12. 11.
    C.H. Greene, Phys. Rev. A 26, 2974 (1982)Google Scholar
  13. 11a.
    J.B. Delos, Rev. Mod. Phys. 53, 287 (1981)ADSCrossRefGoogle Scholar
  14. 11b.
    Joseph Macek and Khachig A. Jerjian, Phys. Rev. A 33, 233 (1986); A.V. Matveenko, and Y. Abe, Few-Body Systems, to be published.ADSCrossRefGoogle Scholar
  15. 12.
    J. Macek, M. Cavagerno, K. Jerjian and U. Fano, Phys. Rev. A 35, 3940 (1987).ADSCrossRefGoogle Scholar
  16. 13.
    W. Fritsch and C.D. Lin, Phys. Rev. A 26, 1255 (1982).CrossRefGoogle Scholar
  17. 14.
    D.R. Bates and D.A. Williams, Proc. Phys. Soc. 83, 425 (1964).ADSCrossRefGoogle Scholar
  18. 15.
    J.S. Briggs and J.H. Macek, J. Phys. B 5, 579 (1972).ADSCrossRefGoogle Scholar
  19. 16.
    C. Zener, Proc. Roy. Soc. A 137, 696 (1932).ADSCrossRefGoogle Scholar
  20. 17.
    H.W. Hermann and I.V. Hertel, J. Phys. B 13, 4285 (1980).ADSCrossRefGoogle Scholar
  21. 18.
    N. Andersen and I.V. Hertel, Comments on Atomic and Molecular Phys. XIX, 1 (1986).Google Scholar
  22. 19.
    A. Salin, J. Phys. B 2, 631 (1969);ADSCrossRefGoogle Scholar
  23. 19a.
    J. Macek, Phys. Rev. A 1, 235 (1970)ADSCrossRefGoogle Scholar
  24. 19b.
    J. Crooks and M.E. Rudd, Phys. Rev. Lett. 25, 1599 (1970)ADSCrossRefGoogle Scholar
  25. 19b.
    K.G. Harrison and M.W. Lucas, Phys. Lett. 33A, 142 (1970).ADSGoogle Scholar
  26. 20.
    M.E. Rudd and J.H. Macek, Case Stud. At. Phys. 3, 47 (1972).Google Scholar
  27. 21.
    R. Shakeshift and L. Spruch, Rev. Mod. Phys. 151, 369 (1979).ADSCrossRefGoogle Scholar
  28. 22.
    W. Heitler, The Quantum Theory of Radiation (Calrendon Press, Oxford, 1954) p. 414.MATHGoogle Scholar
  29. 23.
    L.H. Thomas, Proc. Roy. Soc. 114, 561 (1927).ADSCrossRefGoogle Scholar
  30. 24.
    R.M. Drisko, Ph. D. Thesis, Carnegie Institute of Technology (1955).Google Scholar
  31. 25.
    J. Burgdorfer and K. Taulbjerg, Phys. Rev. A 33, 2959 (1986).ADSCrossRefGoogle Scholar
  32. 26.
    D. Dill and J.L. Dehmer, J. Chem. Phys. 61, 692 (1974).ADSCrossRefGoogle Scholar
  33. 27.
    Joseph Macek, Comments on Atomic and Molecular Physics VI, 169 (1977).Google Scholar
  34. 28.
    J. Macek and R. Shakeshaft, Phys. Rev. 22, 1441 (1980)ADSCrossRefGoogle Scholar
  35. 28a.
    P.A. Amundsen and D.H. Jakubassa, J. Phys. B 13, L467 (1980)ADSCrossRefGoogle Scholar
  36. 28b.
    J.S. Briggs, J. Phys. B 10, 3075 (1977)ADSCrossRefGoogle Scholar
  37. 28c.
    J. Macek and K. Taulbjerg, Phys. Rev. Lett. 46, 170 (1981).ADSCrossRefGoogle Scholar
  38. 29.
    J.H. McGuire, P.R. Simony, O.L Weaver and J. Macek, Phys. Rev. A 26, 1109 (1982).ADSCrossRefGoogle Scholar
  39. 30.
    J.S. Briggs, P.T. Greenland and L. Kocbach, J. Phys. B 15, 3085 (1982).ADSCrossRefGoogle Scholar
  40. 31.
    J.S. Briggs, J. Phys. B 19, 2703 (1986).ADSCrossRefGoogle Scholar
  41. 32.
    L.J. Dube and A. Salin, J. Phys. B 20, L499 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Joseph Macek
    • 1
  1. 1.Department of Physics and AstronomyUniversity of NebraskaLincolnUSA

Personalised recommendations