Variational Calculation of Channel Interaction Parameters

  • Chris H. Greene
Part of the NATO ASI Series book series (NSSB, volume 181)


The ability to calculate the short-range parameters used by multichannel quantum defect theory to describe electronic channel interactions has increased remarkably in the last few years. This improved capability derives more from simplifications in the underlying theoretical description than from the faster computational hardware that has become available. This lecture reviews some of these newer conceptual advances, and the manner in which they interface with more established tools such as quantum defect theory. As examples, recent small-scale calculations are described which have nearly eliminated the longstanding discrepancies between experimental and theoretical cross sections for photoabsorption by atomic calcium and strontium in the energy range up to ten electron volts. Prospects for extracting the dynamical origin of intriguing regularities observed in atomic valence-shell spectra throughout the periodic system are also discussed.


Reaction Surface Logarithmic Derivative Photoionization Cross Section Quantum Defect Channel Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. P. Wigner, Phys. Rev. 70, 15 (1946)ADSCrossRefGoogle Scholar
  2. 1a.
    E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947)ADSCrossRefGoogle Scholar
  3. 1b.
    T. Teichmann and E. P. Wigner, Phys. Rev. 87, 123 (1952).ADSMATHCrossRefGoogle Scholar
  4. 2.
    G. Breit, in Handbuch der Physik, Vol.41, Ed. S. Flugge (Springer-Verlag, Berlin, 1959), pp.107–231Google Scholar
  5. 2a.
    A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257 (1958).MathSciNetADSCrossRefGoogle Scholar
  6. 3.
    P. G. Burke and W. D. Robb, Adv. Atom. Molec. Phys. 11, 143 (1975).CrossRefGoogle Scholar
  7. 4.
    P. G. Burke and K. T. Taylor, J. Phys. B 8, 2620 (1975).ADSCrossRefGoogle Scholar
  8. 5.
    K. T. Taylor, C. J. Zeippen, and M. Le Dourneuf, J. Phys. B 17, L157 (1984).ADSCrossRefGoogle Scholar
  9. 6.
    M. Inokuti, Comments At. Mol. Phys. 10, 99 (1981).Google Scholar
  10. 7.
    M. J. Seaton Rep. Prog. Phys. 46, 167 (1983).ADSCrossRefGoogle Scholar
  11. 8.
    U. Fano and A. R. P. Rau, Atomic Collisions and Spectra, (Academic, Orlando, 1986).Google Scholar
  12. 9.
    C. H. Greene and Ch. Jungen, Adv. At. Molec. Phys. 21, 51 (1985).CrossRefGoogle Scholar
  13. 10.
    D. W. Norcross and M. J. Seaton, J. Phys. B 2, 731 (1969)ADSGoogle Scholar
  14. 10.
    D. W. Norcross and M. J. Seaton, J. Phys. 6, 614 (1973)ADSGoogle Scholar
  15. 10.
    D. W. Norcross and M. J. Seaton, M. A. Crees, Comput. Phys. Commun. 23, 181 (1981)CrossRefGoogle Scholar
  16. 11.
    M. Gailitis, J. Phys. B 9, 843 (1976)ADSCrossRefGoogle Scholar
  17. 11a.
    C. J. Noble and R. K. Nesbet, Comput. Phys. Commun. 33, 399 (1984).ADSCrossRefGoogle Scholar
  18. 12.
    M. Le Dourneuf, Doctoral Thesis, presented at the University of Pierre and Marie Curie, Paris (1976).Google Scholar
  19. 13.
    U. Fano and C. M. Lee, Phys. Rev. Lett. 31, (1973).Google Scholar
  20. 14.
    C. H. Greene, Phys. Rev. A 28, 2209 (1983).ADSCrossRefGoogle Scholar
  21. 14a.
    For a recent review of related developments, see C. H. Greene, J. Opt. Soc. Am. B 4, 775 (1987).ADSCrossRefGoogle Scholar
  22. 15.
    H. Le Rouzo and G. Raseev, Phys. Rev. A 29, 1214 (1984).ADSCrossRefGoogle Scholar
  23. 16.
    C. H. Greene and L. Kim, Phys. Rev. A 36, 2706 (1987).ADSCrossRefGoogle Scholar
  24. 17.
    L. Kim and C. H. Greene, Phys. Rev. A 36, (November 1987).Google Scholar
  25. 18.
    M. Aymar, Luc-Koenig, and S. Watanabe, J. Phys. B 20, 4325 (1987)ADSCrossRefGoogle Scholar
  26. 19.
    M. Aymar, J. Phys. B 21, (in press 1988).Google Scholar
  27. 20.
    P. F. O’Mahony and C. H. Greene, Phys. Rev. A 31, 250 (1985).ADSCrossRefGoogle Scholar
  28. 21.
    P. F. O’Mahony and S. Watanabe, J. Phys. B 32, L239 (1985)CrossRefGoogle Scholar
  29. 22.
    P. F. O’Mahony, Phys. Rev. A 32, 908 (1985).ADSCrossRefGoogle Scholar
  30. 23.
    C M. Lee, Phys. Rev. A 10, 584 (1974).ADSCrossRefGoogle Scholar
  31. 24.
    Ch. Jungen, Phys. Rev. Lett. 53, 2394 (1984).ADSCrossRefGoogle Scholar
  32. 25.
    R. K. Nesbet, Variational Methods in Electron-Atom Scattering Theory (Plenum, New York, 1980).Google Scholar
  33. 26.
    R. S. Oberoi and R. K. Nesbet, Phys. Rev. A 8, 215 (1973)ADSCrossRefGoogle Scholar
  34. 26.
    R. S. Oberoi and R. K. Nesbet, Phys. Rev. A 9, 2804 (1974).ADSCrossRefGoogle Scholar
  35. 27.
    P. J. A. Buttle, Phys. Rev. 160, 719 (1967).ADSCrossRefGoogle Scholar
  36. 28.
    D. J. Zvijac, E. J. Heller, and J. C. Light, J. Phys. B 8, 1016 (1975).ADSCrossRefGoogle Scholar
  37. 29.
    U. Fano, in Invited Papers and Progress Reports of the X ICPEAC, edited by G. Watel (North-Holland, Amsterdam, 1978), p.271.Google Scholar
  38. 30.
    J. P. Desclaux, Comput. Phys. Commun. 1, 216 (1969).ADSCrossRefGoogle Scholar
  39. 31.
    J. Dubau and J. Wells, J. Phys. B 6, 1452 (1973).ADSCrossRefGoogle Scholar
  40. 32.
    G. N. Bates and P. L. Altick, J. Phys. B 6, 653 (1973).ADSCrossRefGoogle Scholar
  41. 33.
    G. Mehlmann-Balloffet and J. M. Esteva, Astrophys. J. 157, 945 (1969).ADSCrossRefGoogle Scholar
  42. 34.
    J. M. Preses, C. E. Burkhardt, W. P. Garver, and J. J. Leventhal, Phys. Rev. A 29, 985 (1984).ADSCrossRefGoogle Scholar
  43. 35.
    C. H. Greene, Phys. Rev. A 23, 661 (1981).ADSCrossRefGoogle Scholar
  44. 36.
    J. W. Cooper, U. Fano, and F. Prats, Phys. Rev. Lett. 10, 518 (1963).ADSCrossRefGoogle Scholar
  45. 37.
    see, e.g. J. J. Wynne and J. A. Armstrong, Comments At. Mol. Phys. 8, 155 (1979), and references therein.Google Scholar
  46. 38.
    K. Bartschat, M. R. H. Rudge, and P. Scott, J. Phys. B 16, 2469 (1986).ADSCrossRefGoogle Scholar
  47. 39.
    K. T. Lu and U. Fano, Phys. Rev. A 2, 81 (1970).ADSCrossRefGoogle Scholar
  48. 40.
    C. M. Lee and K. T. Lu, Phys. Rev. A 8, 1241 (1973).ADSCrossRefGoogle Scholar
  49. 41.
    G. H. Newsom, Proc. Phys. Soc. 87, 975 (1966).ADSCrossRefGoogle Scholar
  50. 42.
    J. P. Connerade, M. A. Baig, W. R. S. Garton, and G. H. Newsom, Proc. Roy. Soc. A 371, 295 (1980).ADSCrossRefGoogle Scholar
  51. 43.
    Z. Altun, S. L. Carter, and H. P. Kelly, J. Phys. B 15, L709 (1982).ADSCrossRefGoogle Scholar
  52. 44.
    P. Scott, A. E. Kingston, and A. Hibbert, J. Phys. B 16, 3945 (1983).ADSCrossRefGoogle Scholar
  53. 45.
    see, e.g. A. F. Starace in Handbuch der Physik, vol.31, ed. W. Melhorn (Springer-Verlag, Berlin, 1982).Google Scholar
  54. 46.
    C. M. Brown, M. S. Longmire, and M. L. Ginter, J. Opt. Soc. Am. 73, 985 (1983).ADSCrossRefGoogle Scholar
  55. 47.
    U. Griesmann, Shen Ning, J. P. Connerade, K. Sommer, and J. Hormes, J. Phys. B (submitted 1987).Google Scholar
  56. 48.
    K. Bartschat, and P. Scott, J. Phys. B 18, L191 (1985)ADSCrossRefGoogle Scholar
  57. 48.
    K. Bartschat, and P. Scott, J. Phys. B 18, 3725 (1985).ADSCrossRefGoogle Scholar
  58. 49.
    P. D. Hudson, V. L. Carter, and P. A. Young, Phys. Rev. A 2, 643 (1970).ADSCrossRefGoogle Scholar
  59. 50.
    J. Berkowitz, in Electronic and Atomic Collisions, eds. D. C. Lorents, W. E. Meyerhof, and J. R. Peterson (North-Holland, 1986), p.631.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Chris H. Greene
    • 1
  1. 1.Department of Physics and AstronomyLouisiana State UniversityBaton RougeUSA

Personalised recommendations