Quantum Defect Theory for Molecules

  • Ch. Jungen
Part of the NATO ASI Series book series (NSSB, volume 181)


During the past 15 years, the developments of molecular quantum defect theory and of the high-resolution spectroscopy of molecular Rydberg states have run largely parallel and have mutually stimulated each other. Before 1970, only moderately high molecular Rydberg states had been observed whose effective principal quantum numbers ranged typically from 2 to 6. The most complete observations were made for H 2 and NO. 1.2 Mulliken 3, in a famous series of papers which appeared in the sixties, summarized the knowledge of Rydberg states in molecules and gave a detailed conceptual description of their electronic and fine structures. He discussed in particular how the electronic wavefunction of a diatomic Rjdberg system evolves through various stages when the nuclei move adiabatically farther and farther apart. While the structures of the low Rydberg states showed many interesting features reflecting the beginning uncoupling of the Rydberg electron from the nuclear framework as well as interactions with valence states, it was not obvious how these states would be related to the scattering or continuum states observed in collision or photionization experiments.


Potential Energy Curve Rydberg State Ionization Threshold Quantum Defect Rydberg Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. H. Dieke, J. Mol. Spectrosc. 2, 494 (1958);ADSCrossRefGoogle Scholar
  2. 1a.
    G. H. Dieke, The Hydrogen Molecule Wavelength Tables of G. H. Dieke, edited by H. M. Crosswhite (Wiley, New York, 1972).Google Scholar
  3. 2.
    E. Miescher, J. Mol. Spectrosc. 20, 130 (1966).ADSCrossRefGoogle Scholar
  4. 3.
    R. S. Mulliken, J. Am. Chem. Soc. 86, 3183 (1964);CrossRefGoogle Scholar
  5. 3a.
    R. S. Mulliken, J. Am. Chem. Soc. 88, 1849 (1966);CrossRefGoogle Scholar
  6. 3b.
    R. S. Mulliken, J. Am. Chem. Soc. 91, 4615 (1969).CrossRefGoogle Scholar
  7. 4.
    G. Herzberg, Phys. Rev. Lett. 23, 1081 (1969).ADSCrossRefGoogle Scholar
  8. 5.
    S. Takezawa, J. Chem. Phys. 52, 2575, 5793 (1970).ADSCrossRefGoogle Scholar
  9. 6.
    Chris H. Greene and Ch. Jungen, Adv. At. Mol. Phys. 21, 51 (1985).CrossRefGoogle Scholar
  10. 7.
    J. H. Van Vleck, J. Chem. Phys. 4, 327 (1936).ADSCrossRefGoogle Scholar
  11. 8.
    P. M. Dehmer and W. A. Chupka, J. Chem. Phys. 65, 2243 (1976).ADSCrossRefGoogle Scholar
  12. 9.
    J. E. Pollard, D. J. Trevor, J. E. Rent, Y. T. Lee and D. A. Shirley, Chem. Phys. Lett. 88, 434 (1982).ADSCrossRefGoogle Scholar
  13. 10.
    F. H. Mies, Phys. Rev. 175, 164 (1968).ADSCrossRefGoogle Scholar
  14. 11.
    U. Fano, Phys. Rev. A2, 353 (1970).MathSciNetADSGoogle Scholar
  15. 12.
    M. J. Seaton, Rep. Prog. Phys. 46, 167 (1983).ADSCrossRefGoogle Scholar
  16. 13.
    U. Fano and A.R.P. Rau, Atomic Collisions and Spectra (Academic, Orlando, FL, 1986).Google Scholar
  17. 14.
    Ch. Jungen and Dan Dill, J. Chem. Phys. 73, 3338 (1980).ADSCrossRefGoogle Scholar
  18. 15.
    Chris. H. Greene, A. R. P. Rau and U. Fano, Phys. Rev. A26, 2441 (1982).ADSGoogle Scholar
  19. 16.
    G. Herzberg and Ch. Jungen, J. Mol. Spectrosc. 41, 425 (1972).ADSCrossRefGoogle Scholar
  20. 17.
    E. S. Chang, Dan Dill and U. Fano, Abstr. Proc. Int. Conf. Phys. Electron. At. Collisions 8th, Belgrade, p. 536.Google Scholar
  21. 18.
    Ch. Jungen and O. Atabek, J. Chem. Phys. 66, 5584 (1977).ADSCrossRefGoogle Scholar
  22. 19.
    J. H. Van Vleck, Rev. Mod. Phys. 23, 213 (1951).ADSMATHCrossRefGoogle Scholar
  23. 20.
    H. Takagi and H. Nakamura, Phys. Rev. A27, 691 (1983).ADSGoogle Scholar
  24. 21.
    G. Raseev, J. Phys. B 18, 423 (1985).ADSCrossRefGoogle Scholar
  25. 22.
    L. Wolniewicz and K. Dressler, J. Chem. Phys. 88 (1988) (in press), and earlier references therein.Google Scholar
  26. 23.
    M. Raoult, Ch. Jungen and Dan Dill, J. Chim. Phys. Biol. 77, 599 (1980).Google Scholar
  27. 24.
    Dan Dill and Ch. Jungen, J. Phys. Chem. 84, 2116 (1980).CrossRefGoogle Scholar
  28. 25.
    M. Raoult and Ch. Jungen, J. Chem. Phys. 74, 3388 (1981).ADSCrossRefGoogle Scholar
  29. 2G.
    Ch. Jungen and M. Raoult, Faraday Discuss. Chem. Soc. 71, 253 (1981).CrossRefGoogle Scholar
  30. 27.
    N. Y. Du and C. H. Greene, J. Chem. Phys. 85, 5430 (1986).ADSCrossRefGoogle Scholar
  31. 28.
    Ch. Jungen, Phys. Rev. Lett. 53, 2394 (1984).ADSCrossRefGoogle Scholar
  32. 29.
    U. Fano and C. M. Lee, Phys. Rev. Lett. 31, 1573 (1973).ADSCrossRefGoogle Scholar
  33. 30.
    C. M. Lee, Phys. Rev. A10, 584 (1974).ADSGoogle Scholar
  34. 31.
    P. M. Guyon, J. Breton and M. Glass-Maujean, Chem. Phys. Lett. 68, 314 (1979) andADSCrossRefGoogle Scholar
  35. 31a.
    P. M. Guyon, J. Breton and M. Glass-Maujean, Chem. Phys. Lett. 69, 591 (1979), and private communication.ADSGoogle Scholar
  36. 32.
    R. S. Berry, J. Chem. Phys. 45, 1228 (1966).ADSCrossRefGoogle Scholar
  37. 33.
    U. Fano, Phys. Rev. A32, 617 (1985).ADSGoogle Scholar
  38. 34.
    R. S. Berry and S. E. Nielsen, Phys. Rev. A1, 383, 395 (1970).ADSGoogle Scholar
  39. 35.
    Chris H. Greene and Ch. Jungen, Phys. Rev. Lett. 55, 1066 (1985).ADSCrossRefGoogle Scholar
  40. 36.
    A. Giusti-Suzor and H. Lefebvre-Brion, Chem. Phys. Lett. 76, 132 (1980).ADSCrossRefGoogle Scholar
  41. 37.
    M. Raoult, J. Chem. Phys. 87, 4736 (1987).ADSCrossRefGoogle Scholar
  42. 38.
    S. Ross and Ch. Jungen, Phys. Rev. Lett. 59, 1297 (1987).ADSCrossRefGoogle Scholar
  43. 39.
    G. Herzberg and Ch. Jungen, J. Chem. Phys. 77, 5876 (1982).ADSCrossRefGoogle Scholar
  44. 40.
    F. H. Mies, J. Chem. Phys. 80, 2514 (1984).ADSCrossRefGoogle Scholar
  45. 41.
    Byungduk Yoo and Chris H. Greene, Phys. Rev. A 34, 1635 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Ch. Jungen
    • 1
  1. 1.Laboratoire de Photophysique Moléculaire du CNRSUniversité de Paris-SudOrsayFrance

Personalised recommendations