Clusters, or the Transition from Molecular to Condensed Matter Physics

  • Hellmut Haberland
Part of the NATO ASI Series book series (NSSB, volume 181)


Scientists speak of clusters in very many different contexts indeed: structures in atomic nuclei, in liquid and solid materials, and in gases have been labeled with this title. Astronomers talk of clusters of stars and even clusters of galaxies, a computer company sells a VAX-cluster, there are musical clusters/*/, and so on....Obviously there exists something common among these widely different subjects. The Concise Oxford Dictionary defines a cluster as a “group of similar things”.


Metal Cluster Neutral Cluster Aluminum Cluster Sodium Cluster Supersonic Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    General references on clusters: a) Surf. Sci. Vol. 106 (1980) and 156 (1985), Proceedings of the 2. and 3. International Meeting on Small Particles and Inorganic Clusters. b) Z. Phys. D 3, Nr. 2 and 3 (1986) c) Ber. Bunsenges. Phys. Chem. 88 (1984) d) J. Phys. Chem. 91 Nr.10 (1987) e) The Physics and Chemistry of small clusters, NATO ASI series B158 P. Jena, B. K. Rao and S. N. Khanna, eds., Plenum, New York 1987 f) Microclusters, S. Sugano, Y. Nishina and S. Onishi, eds., Springer 1987 g) Metal Clusters, M. Moskovits, ed. J. Wiley, New York 1986 h) T. D. Mark, A. W. Castleman, Jr. Experimental studies on cluster ions, Adv. in Atomic and Molecular Physics, Vol.20:65 (1985) i) M. R. Hoare, Structure and dynamics of simple microclusters, Adv. Chem. Phys. 40:49 (1979) k) Elemental and Molecular Clusters, Proceedings of the International School of Material Science and Technology, 13th Course, Erice 1987 (eds. G. Benedek and T. P. Martin), to be published by Springer Co. (Heidelberg), in Material Science Ser. 1) “Large Finite Systems”, J. Jortner, A. and B. Pullman, eds. D. Reidel, Dordrecht 1987, Proc. of the 20. Jerusalem Symposium on Quantum Chemistry and BiochemistryCrossRefGoogle Scholar
  2. 1m).
    J. E. Campana, Cluster ions. I. Methods, in Mass Spectrometry Review 6:395 (1987) n) M. A. Johnson and W. C. Lineberger, Pulsed methods for cluster ion spectroscopy o) Y. Imry, Physics of Mesoscopic Systems p) J. Jortner, D. Scharf and U. Landman, Energetics and dynamics of clusters, Int. Scool of Physics, “Enrico Fermi”, Course XCVI Excited state spectroscopy in solids, North Holland 1987CrossRefGoogle Scholar
  3. 1q).
    W. P. Halperin, Quantum size effects in metal particles, Rev. Mod. Phys. 58:533 (1986)ADSCrossRefGoogle Scholar
  4. 1r).
    T. Kondow, Ionisation of Clusters in collisions with high-Rydberg rare gas atoms, J. Phys. Chem. 91:1307 (1987) s) C. Hayashi, Ultrafine particles, Physics Today, December 1987CrossRefGoogle Scholar
  5. 1t).
    J. Friedel, Small aggregates, Helv. Phys. Acta 56:507 (1983)Google Scholar
  6. 2.
    J. Jortner, Level structure and dynamics of clusters, Ber. Bunsenges. Phys. Chem. 88:1 (1984)Google Scholar
  7. 3.
    a) J. Farges, M. Feraudy, B. Raoult and G. Torchet, Structure and temperature of rare gas clusters in a supersonic expansion Surf. Sci. 106:95 (1981), and ref. 1 e+1 b) Y. Z. Barshad and L. S. Bartlett, Electron diffraction of supersonically generated clusters, in ref. 1 eGoogle Scholar
  8. 4.
    T. P. Martin, Alkali-halide clusters, Physics Reports 95:167 (1983) and: Clusters what are they, in IkADSCrossRefGoogle Scholar
  9. 5.
    M. N. Barber, in “Phase Transitions and Critical Phenomena”, Vol.8 Eds. C. Domb and J. L. Lebowitz, Academic Press, New York 1983Google Scholar
  10. 6.
    Ph. Buffat, J.-P. Borel, Size effect on the melting temperature of gold clusters, Phys. Rev. A13:2287 (1976)ADSGoogle Scholar
  11. 7.
    G. L. Allen et al. Small particle melting of pure metals Thin Solid Films 152:297 (1986)ADSCrossRefGoogle Scholar
  12. 8.
    J. W. M. Frenken and J. F.van der Veen, Observation of surface melting, Phys. Rev. Lett. 54:134 (1985)ADSCrossRefGoogle Scholar
  13. 9.
    J. W. M. Frenken and J. F. van der Veen, Dynamics and melting of surfaces, Surf. Sci. 178:382 (1986)ADSCrossRefGoogle Scholar
  14. 10.
    J. Jellinek, T. L. Beck and R. S. Berry, Solid-liquid like phase changes in simulated isoenergetic Ar13 J. Chem. Phys. 84:2783 (1986), and ref. le and 1f.ADSCrossRefGoogle Scholar
  15. 11.
    J. Bösiger and S. Leutwyler, Surface melting transitions and phase coexistence in argon solvent clusters, Phys. Rev. Lett. 59:1895 (1987)ADSCrossRefGoogle Scholar
  16. 12.
    F. F. Abraham, Statistical surface physics: a perspective via computer simulations of microclusters, interfaces and simple fluids, Rep. Prog. Phys. 45:1113 (82)CrossRefGoogle Scholar
  17. 13.
    P. A. Montano, G. K. Shenoy, E. E. Alp, W. Schulze and J. Urban Structure of copper microclusters isolated in solid argon Phys. Rev. Lett. 56:2076 (1986)ADSCrossRefGoogle Scholar
  18. 14.
    E. Schumacher and M. Kappes, Isolated, bare metal clusters: abundances and ionisation, in ref.11.Google Scholar
  19. 16.
    W. Eckart, Workfunction of small metal particles: self-consistent spherical jellium background model, Phys. Rev. B29:1558 (1984), and priv.communication.ADSGoogle Scholar
  20. 17.
    G. Makov, A. Nitzan and L. E. Brus. in 11, and J. Chem. Phys, submittedGoogle Scholar
  21. 18.
    W. F. Hoffman III, E. K. Parks, G. C. Riley, G. C. Nieman, L. G. Pobo, and S. J. Riley, The kinetics of reaction of nickel clusters with hydrogen and deuterium, Z. Phys. D7:83 (1987); see also ref. Id and le.ADSGoogle Scholar
  22. 19.
    B. Mühlschlegel, Theoretical and experimental aspects of superconducting small particles, Surf. Sci. 106: 350 (1981)ADSCrossRefGoogle Scholar
  23. 20. a).
    D. M. Cox, D. J. Trevor, R. L. Whetten, E. A. Rohlfing, and A. Kaldor, Aluminum clusters: Magnetic properties, J. Chem. Phys. 84:4651 (1986)ADSCrossRefGoogle Scholar
  24. 20 b).
    I. S. Jacobs and C. P. Bean “Fine particles, thin films and exchange anisotropy” in Magnetism III, eds. G. T. Rado and H. Suhl, Academic Press, New York and London, 1966Google Scholar
  25. 20 c).
    D. A. Garland and D. M. Lindsay, J. Chem. Phys. 80:4761 (1984) Matrix isolation of Li clustersADSCrossRefGoogle Scholar
  26. 20 d).
    K. W. Blazey, K. A. Müller, F. Blatter and E. Schumacher, Conduction electron spin resonance of caesium metallic clusters in zeolite X, Europhys. Lett. 4:857 (1987)ADSCrossRefGoogle Scholar
  27. 21. a).
    W. A. de Heer, K. Selby, V. Kresin, J. Masui, M. Vollmer, A. Châtelain, and W. D. Knight, Collective dipole oscillations in small sodium clusters, Phys. Rev. Lett. 59,1805 (1987)ADSCrossRefGoogle Scholar
  28. 21. b).
    G. Delacrétaz, E. R. Grant, R. L. Whetten, L. Wöste, and J. W. Zwanziger, Fractional quantisation of molecular pseudorotation in Na Phys. Rev. Lett. 56:2598 (1986)ADSCrossRefGoogle Scholar
  29. 21. c).
    D. G. Leopold, J. Ho, and W. C. Lineberger, Photoelectron spectroscopy of mass-selected metal cluster anions. I. Cun -, n=l-10, J. Chem. Phys. 86:1715 (1987); d) C. L. Petiette, S. H. Yang, M. J. Craycraft, J. Conceicao, R. T. Laaksonen, O. Chesnovsky, and R. E. Smalley, Ultraviolet photoelectron spectroscopy of copper clusters, J. Chem. Phys. submitted Sept. 1987; e) G. Ganteför, K. H. Meiwes-Broer and H.O. Lutz, Photodetachment spectroscopy of cold aluminum cluster anions, Phys. Rev. A 1988 submitted and ref. Ik; f) W. Schulze, K-P. Charlé and U. Kloss, in ref. la (1985)ADSCrossRefGoogle Scholar
  30. 22. a).
    M. L. Mandich, V. E. Bondybey and W. D. Reents, Reactive etching of positive and negative silicon clusters ions by nitrogen dioxide, J. Chem. Phys. 86:4245 (1987)ADSCrossRefGoogle Scholar
  31. 22. b).
    Complex-forming reactions in neutral noble gas clusters D. J. Levandier, J. McCombie, R. Pursel and G. Scoles, Complex forming reactions in neutral noble gas clusters, J. Chem. Phys. 86:7239 (1987) c) M. A. Jarrold and J. E. Bauer, A detailed study of the reactions of size selected aluminum clusters ions and oxygen.ADSCrossRefGoogle Scholar
  32. 23. a).
    M. Kawasaki, Y. Tsujimura and H. Hada, Oscillations of Photo-ionisation thresholds of small photolytic silver clusters on silver bromide grain surface, Phys. Rev. Lett. 57:2796 (1986)ADSCrossRefGoogle Scholar
  33. 23. b).
    P. Fayet, F. Granzer, G. Hegenbart, E. Moisar, B. Pischel and L. Wöste, Latent-image generation by deposition of monodisperse silver clusters, Phys. Rev. Lett. 55:3002 (1985)ADSCrossRefGoogle Scholar
  34. 24.
    B. Donn, J. Hecht, R. Khanna, J. Nuth, D. Stranz and A. B. Anderson, The formation of cosmic grains: an experimental and theoretical study, Surf. Sci. 106:576 (1981)ADSCrossRefGoogle Scholar
  35. 25.
    T. E. Gough, M. Mengel, P. A. Rowntree and G. Scoles, Infrared spectroscopy at the surface of clusters: SF on Ar, J. Chem. Phys. 83:4958 (1985), see also R. J. Le Roy et al. in ref.l 1.ADSCrossRefGoogle Scholar
  36. 26.
    T. Takagi, Ionised cluster beam technique for thin film deposition, Z. Phys. D3:170 (1986) and ref.l aGoogle Scholar
  37. 27.
    W. C. Stwalley, The synthesis of large cluster ions from elementary constituents: A possible route to bulk antimatter. Proc. of the Rand corporation workshop on Antiproton science and technology, ed. Augenstein, Santa Monica, Cal. Oct.1987Google Scholar
  38. 28.
    K. Takayanagi, Growth of clusters studied by high resolution electron microscopy, in ref. 73.Google Scholar
  39. 29.
    a) A. K. Petford-Long, N. J. Long, D. J. Smith, L. R. Wallenberg, and J.O. Bovin, Atomic resolution study of structural rearrangements in metal clusters, page 127 in ref. le. b) S. Iijima, Some experiments on structural instability of small particles of metals, ref. If.Google Scholar
  40. 30.
    R. Birringer, U. Herr, and H. Gleiter, Nanocrystalline materials -a first report,in “Grain Boundary and Related Phenomena”, Proc. of JIMIS-4 (1986), Supplement to Transactions of the Japan Institute of MetalsGoogle Scholar
  41. 31.
    F. Frank, W. Schulze, B. Tesche, J. Urban and B. Winter, Formation of metal clusters and molecules by means of the gas aggregation technique and characterisation of the size distribution, Surf. Sci. 156:90 (1985)ADSCrossRefGoogle Scholar
  42. 32.
    H. Haberland, U. Buck, and M. Tolle, Velocity distribution of supersonic nozzle beams, Rev. Sci. Instum.59:1712 (1985)ADSCrossRefGoogle Scholar
  43. 33.
    H. P. Birkhofer, H. Haberland, M. Winterer, and D. R. Worsnop, Penning, photo- and electron impact ionisation of argon clusters. Ber. Bunsenges. Phys. Chem.88:207 (1984)Google Scholar
  44. 34.
    O. F. Hagena, Condensation in free jets: Comparison of rare gases and metals, Z. Phys. D4:291 (1987) and ref. 1 aADSGoogle Scholar
  45. 35.
    T. A. Miller, Chemistry and chemical intermediates in supersonic free jet expansion, Science 223:545 (1984)ADSCrossRefGoogle Scholar
  46. 36.
    Y. Liu, Q.-L. Zhang, F. K. Tittel, R. F. Curl, and R. E. Smalley, Photodetachment and photofragmentation studies of semiconductor cluster anions, J. Chem. Phys.85: 7434 (1986)ADSCrossRefGoogle Scholar
  47. 37.
    a) L. Wöste or K. H. Meiwes-Broer in ref.le and 1k b) I. Katakuse, T. Ichihara, Y. Fujita, T. Matsuo, T. Sakurai and H. Matsuda, Int. J. Mass Spectrom. Ion Phys. 67:229 (1985)CrossRefGoogle Scholar
  48. 38.
    a) U. Buck, Properties of neutral clusters from scattering experiments J. Phys. Chem., feature article, accepted 1988 b) U. Buck and H. Meyer, Scattering analysis of cluster beams, formation and fragmentation of small Ar clusters, Phys. Rev. Lett. 52:109 (1984)ADSCrossRefGoogle Scholar
  49. 39.
    H. Haberland, C. Ludewigt, H. G. Schindler and D. R. Worsnop, Clusters of water and ammonia with excess electrons, Surf. Sci. 156:157 (1985) more details to the source can be found in ref. 11.ADSCrossRefGoogle Scholar
  50. 40.
    F. Thum and W.O. Hofer, No enhanced electron emission from high density atomic collision cascades in metals, Surf. Sci. 90:331 (1979)ADSCrossRefGoogle Scholar
  51. 41.
    L. Friedman and G. H. Vineyard, Cluster ion impacts on solid surfaces, Comments on At. Mol. Phys. 15:251 (1984)Google Scholar
  52. 42.
    H. Haberland and M. Winterer, Improved detection of large rare gas cluster ions, Rev. Sci. Inst. 54:764 (1983)ADSCrossRefGoogle Scholar
  53. 43.
    W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen, Electronic shell structure and abundances of sodium clusters, Phys. Rev. Lett. 52:2141 (1984)ADSCrossRefGoogle Scholar
  54. 44.
    K. Clemenger, Ellipsoidal shell structure in free electron metal clusters, Phys. Rev. B33:1359 (1985)ADSGoogle Scholar
  55. 45.
    I. Boustani, W. Pewesdorf, P. Fantucci, V. Bonacic-Koutecky and J. Koutecky, Systematic ab initio CI study of alkali metal clusters Phys. Rev. B35:9437 (1987)ADSGoogle Scholar
  56. 46.
    D. M. Lindsay, Y. Wang, and T. F. George, The Hückel model for small metal clusters. II. Orbital energies, shell structures, ionisation potentials, and extrapolation to the bulk limit, J. Chem. Phys. 85:3500 (1987)ADSCrossRefGoogle Scholar
  57. 47.
    M. M. Kappes, M. Schär, E. Schumacher and A. Vayloyan, On ionisation induced unimolecular dissociation of sodium clusters, Z. Phys. D5:359 (1987)ADSGoogle Scholar
  58. 48.
    C. Bréchignac, Ph. Cahuzac, and J. Ph. Roux, Photoionisation of potassium clusters, J. Chem. Phys, 87:229 (1987)ADSCrossRefGoogle Scholar
  59. 49.
    J. A. Barker,“Interatomic potentials for inert gases from experimental data” in “Rare Gas Solids”, eds. M. L. Klein and J. A. Venables, Academic Press 1977Google Scholar
  60. 50.
    H. Haberland, A model for the processes happening in a rare-gas cluster after ionisation, Surface Science 156,305 (1985)ADSCrossRefGoogle Scholar
  61. 51.
    C. Kittel, Introduction to Solid State Physics, Advanced Topic F 4th edition, Wiley, New York 1976Google Scholar
  62. 52.
    M. Alonso and E. J. Finn, Fundamental University Physics, Vol.3, chapter 5.2, example 5.1, Addison-Wesley publishing Co. 1974Google Scholar
  63. 53.
    a) N. Schwentner, E. E. Koch, and J. Jortner, “Electronic excitations in condensed rare gases”, Springer Tracts in Modern Physics, Vol.107 Springer, Berlin 1986 b) G. Zimmerer, Creation, Motion and Decay of excitons in rare gas solids, Int. Scool of Physics, “Enrico Fermi”, Course XCVI, p.37, Excited state spectroscopy in solids, North Holland 1987Google Scholar
  64. 54.
    H.U. Böhmer and S. D. Peyerimhoff, MRD-CI calculations for the ground state potential energy surface of Art, Z. Phys. D4:195 (1986)ADSGoogle Scholar
  65. 55.
    M. Amarouche, G. Durand and J. P. Malrieu, Structure and stability of Xe19+cluster, J. Chem. Phys. submittedGoogle Scholar
  66. 56.
    J. Hesslich and P. J. Kuntz, A diatomics-in-molecules model for singly ionised argon clusters, Z. Phys. D2: 251 (1986)ADSGoogle Scholar
  67. 57.
    H. H. Michels, priv.comm. 1987Google Scholar
  68. 58.
    H. Haberland, On the electronic structure of a singly ionised cluster composed of closed shell atoms or molecules, in ref. 1 e.Google Scholar
  69. 59.
    J. M. Soler, J. J. Sáenz, N. Garcia and O. Echt, The effect of ionisation on magic numbers of rare gas clusters, Chem. Phys. Lett. 109:71 (1984)ADSCrossRefGoogle Scholar
  70. 60.
    P. Scheier and T. Märk, Observation of sequential decay in metastable Ar cluster, Phys. Rev. Lett.59:1813 (1987)ADSCrossRefGoogle Scholar
  71. 61.
    A. J. Stace, A measurement of the average kinetic energy releases during the unimolecular decomposition of argon ion clusters, J. Chem. Phys.85:5774 (1986)ADSCrossRefGoogle Scholar
  72. 62.
    H. Falter, O. F. Hagena, W. Henkes, und H. V. Wedel, Einfluss der Elektronenenergie auf das Massenspektrum von Clustern in kondensierten Molekularstrahlen, Int. J. Mass Spec. Ion Phys. 4:145 (1970), see also ref. 27.CrossRefGoogle Scholar
  73. 63.
    C. T. Reiman, R. E. Johnson and W. L. Brown, Sputtering and luminescence in electronically excited solid argon, Phys. Rev. Lett. 53: 600 (1984)ADSCrossRefGoogle Scholar
  74. 64.
    J. Schouch, P. Borgensen, O. Ellegard, H. Sorensen, C. Clausen, Erosion of solid neon by means of keV electrons, Phys. Rev. B34:93 (1986)ADSGoogle Scholar
  75. 65.
    D. Kreisle, O. Echt, M. Knapp and E. Recknagel, Time dependent size distribution of xenon cluster ions, Phys. Rev. A33:786 (1986)ADSGoogle Scholar
  76. 66.
    C. R. Albertoni, R. Kuhn, H. W. Sarkas and A. W. Castleman Photodissociation of rare gas cluster ions: Ar J. Chem. Phys.87:5043 (1987)ADSCrossRefGoogle Scholar
  77. 67.
    H. Haberland, C. Ludewigt, H. G. Schindler and D. R. Worsnop, Clusters of water and ammonia with excess electrons, Surf. Sci. 156:157 (1985)ADSCrossRefGoogle Scholar
  78. 68.
    K.-H. Meiwes-Broer, priv. comm., and ref./21e/Google Scholar
  79. 69.
    R. N. Barnett, U. Landman, C. L. Cleveland, J. Jortner, Surface states of excess electrons on water clusters, Phys. Rev. Lett. 59, 811 (1987) and ref. 11 and 2ADSCrossRefGoogle Scholar
  80. 70.
    H. Haberland, C. Ludewigt, H. G. Schindler and D. R. Worsnop, Field detachment of (H2O)- 2 clustered with rare gases, Phys. Rev. A36:967 (1987)ADSGoogle Scholar
  81. 71.
    G. H. Lee, J. Eaton, Ch. Ludewigt, H. Haberland, and K. H. Bowen, unpublished dataGoogle Scholar
  82. 72.
    P. Stampfli and K. H. Bennemann, Theory for the electron affinity of small polar clusters (NH3)N, Phys. Rev. Lett. 58: 2635 (1987)ADSCrossRefGoogle Scholar
  83. 73.
    P. Jiang, F. Jona, P. M. Marcus, Surface effects in metal microclusters Phys. Rev. B36:6336 (1987)ADSGoogle Scholar
  84. 74.
    Proceedings of the 4. International Meeting on Small Particles and Inorganic Clusters, Aix-en-Provence, France, July 1988.Google Scholar
  85. 75.
    106th Course of the International School of Physics “Enrico Fermi” The Chemical Physics of Atomic and Molecular Clusters G. Scoles, editorGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Hellmut Haberland
    • 1
  1. 1.Fakultät für PhysikUniversität FreiburgFreiburgGermany F. R.

Personalised recommendations