Collision-Produced Atomic States

  • Nils Andersen
Part of the NATO ASI Series book series (NSSB, volume 181)


The last 10–15 years have witnessed the development of a new, powerful class of experimental techniques for atomic collision studies, allowing partial or complete determination of the state of the atoms after a collision event, i.e. the full set of quantum-mechanical scattering amplitudes or — more generally — the density matrix describing the system. Evidently, such studies, involving determination of alignment and orientation parameters, provide much more severe tests of state-of-the-art scattering theories than do total or differential cross section measurements which depend on diagonal elements of the density matrix.1 The off-diagonal elements give us detailed information about the shape and dynamics of the atomic states. Therefore, close studies of collision-produced atomic states are currently leading to deeper insights into the fundamental physical mechanisms governing the dynamics of atomic collision events.


Total Cross Section Impact Parameter Atomic State Stokes Parameter Atomic Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See J. Burgdörfer, this volume.Google Scholar
  2. 2.
    J. Macek, in: “Fundamental Processes in Energetic Atomic Collisions”, H.O. Lutz, J.S. Briggs, and H. Kleinpoppen, eds., Plenum Press 1983, p.39.CrossRefGoogle Scholar
  3. 3.
    K. Blum, in: “Fundamental Processes in Atomic Collision Physics”, H. Kleinpoppen, J.S. Briggs, and H.O. Lutz, eds., Plenum Press 1985, p.103.CrossRefGoogle Scholar
  4. 4.
    R. Hippler, in: “Fundamental Processes in Atomic Collision Physics”, H. Kleinpoppen, J.S. Briggs, and H.O. Lutz, eds., Plenum Press 1985, p.181.CrossRefGoogle Scholar
  5. 5.
    See in particular H. Kleinpoppen, this volume.Google Scholar
  6. 6.
    N. Andersen, J.W. Gallagher and I.V. Hertel, in: “Electronic and Atomic Collisions”, D.C. Lorents, W.E. Meyerhof, and J.R. Peterson, eds. North-Holland 1986, p.57.Google Scholar
  7. 7.
    N. Andersen, J.W. Gallagher, and I.V. Hertel, Physics Reports, in print.Google Scholar
  8. 8.
    P. van der Straten and R. Morgenstern, Comm. At. Mol. Phys. 17 243 (1986).Google Scholar
  9. 9.
    H.E. White, Phys. Rev. 37 1416 (1931).ADSMATHCrossRefGoogle Scholar
  10. 10.
    V.F. Weisskopf: “Knowledge and Wonder. The Natural World as Man knows it.” MIT Press 1980.Google Scholar
  11. 11.
    N. Andersen, I.V. Hertel and H. Kleinpoppen, J. Phys. B 17 L901 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    N. Andersen, T. Andersen, H-P. Neitzke and E.H. Pedersen, J. Phys. B 18 2247 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    M. Born and E. Wolf: “Principles of Optics”, 4th Ed. Pergamon Press 1970.Google Scholar
  14. 14.
    B. Bederson, Comm. At. Mol. Phys. 1 41 (1969); ibid. 27 (1970).Google Scholar
  15. 15.
    See E. Campbell, this volume.Google Scholar
  16. 16.
    H. Poincaré: “Théorie Matematlque de la Lumière”, G. Carré 1889, Chap. 12.Google Scholar
  17. 17.
    D.H. Madison, private communication. The theory is described in D.H. Madison and K.H. Winters, J. Phys. B 16 4437 (1983).ADSGoogle Scholar
  18. 18.
    J. Macek and D.H. Jaecks, Phys. Rev. A 4 2288 (1971).ADSCrossRefGoogle Scholar
  19. 19.
    K. Blum: “Density Matrix Theory and Applications”, Plenum 1981.Google Scholar
  20. 20.
    N. Andersen, T. Andersen, J.S. Dahler, S.E. Nielsen, G. Nienhuis and K. Refsgaard, J. Phys. B 16 817 (1983).ADSCrossRefGoogle Scholar
  21. 21.
    U. Fano and J. Macek, Rev. Mod. Phys. 45 553 (1973).ADSCrossRefGoogle Scholar
  22. 22.
    See contributions by H. Lutz and C.D. Lin, this volume.Google Scholar
  23. 23.
    N. Andersen and S.E. Nielsen, Adv. At. Mol. Phys. 18 265Google Scholar
  24. 24.
    G.S. Panev, N. Andersen, T. Andersen, and P. Dalby, Z.Physik D 5 331 (1987).ADSCrossRefGoogle Scholar
  25. 25.
    R.S. Berry, J. Chem. Phys. 45 1288 (1966).CrossRefGoogle Scholar
  26. 26.
    U. Fano, Phys. Rev. A 32 617 (1985).ADSCrossRefGoogle Scholar
  27. 27.
    C.W. Lee and U. Fano, Phys. Rev. A 36 66 (1987); ibid. p. 74.ADSCrossRefGoogle Scholar
  28. 28.
    A. Winther, in: “Semlclasslcal Descriptions of Atomic and Nuclear Collisions”. Proceedings of the Niels Bohr Centennial Conferences, Copenhagen 1985, J. Bang and J. de Boer,eds. North-Holland 1985, p. 137.Google Scholar
  29. 29.
    N. Andersen and S.E. Nielsen, Z.Phys. D 5 309 (1987).ADSCrossRefGoogle Scholar
  30. 30.
    S.E. Nielsen and N. Andersen, Z.Phys. D 5 321 (1987).ADSCrossRefGoogle Scholar
  31. 31.
    See J. Andrä, this volume.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Nils Andersen
    • 1
    • 2
  1. 1.Institute of PhysicsUniversity of AarhusAarhus CDenmark
  2. 2.Physics LaboratoryH.C. Ørsted InstituteCopenhagenDenmark

Personalised recommendations