A Molecular Description of Electron Pair Excitation in Atoms

  • James M. Feagin
Part of the NATO ASI Series book series (NSSB, volume 181)


It has been thought for some time that the shape, depicted in Fig. 1, of the two-center Coulomb potential in two-electron atoms characterizes much of the atom’s internal motions, particularly for double or “pair” excitations outside an ionic core. The idea is rooted in the familiar Wannier model of threshold double escape (Wannier, 1953; Rau, 1971; Peterkop, 1971). Small total energy E near threshold ensures that electron kinetic energies are small and hence that the escape is strongly dependent on the Interplay of the Interelectronic repulsion 1/R and the electron-ion attraction -Z/r1-Z/r2. The breakup is thus characterized by a collinear configuration for the escaping pair along the “Wannier” saddle in the potential, clearly visible in Fig. 1. As the double escape develops and the two electrons and hence the two centers separate, one pictures the saddle as moving about the ion but with its center always located near the ion. This picture excludes the formation of one-electron bound states (single escape) when one or the other of the two-center wells orbits the ion, since the center of the saddle is located halfway between the two electrons at their center of charge.


Molecular Orbital Total Angular Momentum Potential Curf Internuclear Separation Internuclear Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bates, D.R., Ledsham, K., and Stewart, Al., 1953, Phil. Trans. Roy. Soc. London A, 246:215.MathSciNetADSMATHCrossRefGoogle Scholar
  2. Bates, D.R., and Reid, R.H.G., 1968, Adv. At. Mol. Phys., 4:13.CrossRefGoogle Scholar
  3. Botero, J., and Greene, C.H., 1986, Phys. Rev. Lett., 56:1366.ADSCrossRefGoogle Scholar
  4. Cooper, J.W., Fano, U., and Prats, F., 1963, Phys. Rev. Lett, 10:518.ADSCrossRefGoogle Scholar
  5. Coulson, C.A., and Joseph, A., 1967, Int. J. Quant. Chem., 1:337.ADSCrossRefGoogle Scholar
  6. Crothers, D.S.F., 1986, J. Phys. B, 19:463.ADSCrossRefGoogle Scholar
  7. Cvejanovic, S., 1987, Institute of Physics, Belgrad, Yugoslavia, in preparation.Google Scholar
  8. Dalgarno, A., and McCarroll, R., 1956, Proc. Roy. Soc. A, 237:383,ADSCrossRefGoogle Scholar
  9. ibid., 1957, 239:274,Google Scholar
  10. ibid., 1957, 239:413.ADSMATHCrossRefGoogle Scholar
  11. Ezra, G.S., and Berry, R.S., 1983, Phys. Rev. A, 28:1974.ADSCrossRefGoogle Scholar
  12. Fano, U., 1983, Rep. Prog. Phys., 46:97.ADSCrossRefGoogle Scholar
  13. Feagin, J.M., 1984a, Bull. Am. Phys. Soc., 29:801.Google Scholar
  14. Feagin, J.M., 1984b, J. Phys. B, 17:2433.ADSCrossRefGoogle Scholar
  15. Feagin, J.M., Briggs, J.S., and Weissert, T.P., 1985, Abstracts of the 14th IntConf.onthe Physics of Electronic and Atomic Collisions, Palo Alto, p. 147.Google Scholar
  16. Feagin, J.M., and Briggs, J.S., 1986, Phys. Rev. Lett., 57:984.ADSCrossRefGoogle Scholar
  17. Feagin, J.M., and Briggs, J.S., 1988, submitted to Phys. Rev. A.Google Scholar
  18. Fröman, A., 1962, J. Chem. Phys., 36:1460.CrossRefGoogle Scholar
  19. Greene, C.H., 1980, J. Phys. B, 13:L39.ADSCrossRefGoogle Scholar
  20. Greenland, P.T., 1982, Phys. Rep., 81:131.ADSCrossRefGoogle Scholar
  21. Herrick, D.R., 1983, Adv. Chem. Phys., 52:1.CrossRefGoogle Scholar
  22. Herrick, D.R., and Kellman, M.E. 1980, Phys. Rev. A, 21:418.ADSCrossRefGoogle Scholar
  23. Herrick, D.R., and Sinanoglu, O., 1975, Phys. Rev. A, 11:97.ADSCrossRefGoogle Scholar
  24. Hunter, G., and Prftchard, H.O., 1967, J. Chem. Phys., 46:2153.ADSCrossRefGoogle Scholar
  25. Kellman, M.E., 1985, Phys. Rev. Lett., 55:1738.ADSCrossRefGoogle Scholar
  26. Klar, H., and Klar, M., 1980, J. Phys. B, 13:1057.ADSCrossRefGoogle Scholar
  27. Lin, C.D., 1976, Phys. Rev. A, 14:30.ADSCrossRefGoogle Scholar
  28. Lin, C.D., 1984, Phys. Rev. A, 29:1019.ADSCrossRefGoogle Scholar
  29. Liacek, J., 1968, J. Phys. B, 1:831.ADSCrossRefGoogle Scholar
  30. Macek, J., and Feagin, J.M., 1985, J. Phys. B, 18:2161.ADSCrossRefGoogle Scholar
  31. Madden, R.P., and Codling, K., 1963, Phys. Rev. Lett, 10:516.ADSCrossRefGoogle Scholar
  32. Maimer, K., and Taulbjerg, K., 1987, Department of Physics, University of Aar hus, preprint.Google Scholar
  33. Pack, R.T., 1985, Phys. Rev. A, 32:2022.ADSCrossRefGoogle Scholar
  34. Pack, R.T., and Hirschfelder, J.O., 1968, J. Chem. Phys., 49:4009.MathSciNetADSCrossRefGoogle Scholar
  35. Pauling, LP., and Wilson, E.B., 1935, Introduction to Quantum Mechanics, McGraw-Hill, New York; 1987, Dover Publications, New York.Google Scholar
  36. Peterkop, R., 1971, J. Phys. B, 4:513.ADSCrossRefGoogle Scholar
  37. Rau, A.R.P., 1971, Phys. Rev. A, 4:207.ADSCrossRefGoogle Scholar
  38. Rost, J.M., and Briggs, U.S., 1987, Z. Phys. D, 5:339.ADSCrossRefGoogle Scholar
  39. Selles, P., Huetz, A., and Mazeau, J., 1987a, J. Phys. B, in press.Google Scholar
  40. Sel1es, P., Mazeau, J., and Huetz, A., 1987b, J. Phys. B, in press.Google Scholar
  41. Slater, J.C., 1977, Quantum Theory of Matter, Krieger, New York.Google Scholar
  42. Wannier, G.H., 1953, Phys. Rev., 90:817.ADSMATHCrossRefGoogle Scholar
  43. Watanabe, S., and Lin, C.D., 1986, Phys. Rev. A, 34:823.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • James M. Feagin
    • 1
  1. 1.Department of PhysicsCalifornia State UniversityFullertonUSA

Personalised recommendations