An Estrogen Induced Protease in Breast Cancer: From Basic Research to Clinical Applications

  • Henri Rochefort
  • Patrick Augereau
  • Pierre Briozzo
  • Francoise Capony
  • Vincent Cavailles
  • Marcel Garcia
  • Muriel Morisset
  • Gilles Freiss
  • Francoise Vignon
Part of the Serono Symposia, USA book series (SERONOSYMP)


In the cascade of events following the interaction of estrogens with their nuclear receptors in breast cancer cells, some of them are involved in the hormonal stimulation of cell growth. Their identification may improve both our understanding of the mechanism by which tumor growth is controlled and the monitoring and treatment of breast cancer.


Breast Cancer Breast Cancer Cell MCF7 Cell Human Breast Cancer Cell Line MCF7 Breast Cancer Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams DJ, Edwards DP, McGuire WL. Estrogen regulation of specific proteins as a mode of hormone action in human breast cancer; vol 11. In: Biomembranes, 1983: 389.Google Scholar
  2. 2.
    Rochefort H, Chalbos D, Capony F, et al. Effect of estrogen in breast cancer cells in culture: released proteins and control of cell proliferation. In: Gurpide E, Calandra R, Levy C, Soto RJ, eds. Hormones and cancer; vol 142. New York: Alan R. Liss, Inc., 1984: 37.Google Scholar
  3. 3.
    Vignon F, Rochefort H. The regulation by estradiol of proteins released by breast cancer cells. In: Hollander VP, ed. Hormone responsive tumors. New York: Academic Press, 1985: 135.Google Scholar
  4. 4.
    Lippman ME, Dickson RB, Bates S, et al. Autocrine and paracrine growth regulation of human breast cancer. Breast Cancer Res Treat 1986; 1: 59.CrossRefGoogle Scholar
  5. 5.
    Westley B, Rochefort H. Estradiol induced proteins in the MCF7 human breast cancer cell line. Biochem Biophys Res Commun 1979; 90: 410.PubMedCrossRefGoogle Scholar
  6. 6.
    Westley B, Rochefort H. A secreted glycoprotein induced by estrogen in human breast cancer cell lines. Cell 1980; 20: 352.CrossRefGoogle Scholar
  7. 7.
    Garcia M, Contesso G, Duplay H, et al. Immunohistochemical distribution of the 52K protein in mammary tumors: a marker associated to cell proliferation rather than to hormone responsiveness. J Steroid Biochem 1987; 26 (in press).Google Scholar
  8. 8.
    Westley B, May FEB, Brown AMC, et al. Effects of antiestrogens on the estrogen regulated pS2 RNA, 52-kDa and 180-kDa protein in MCF7 cells and two tamoxifen resistant sublines. J Biol Chem 1984; 259: 10030.PubMedGoogle Scholar
  9. 9.
    Garcia M, Capony F, Derocq D, Simon D, Pau B, Rochefort H. Monoclonal antibodies to the estrogen-regulated Mr 52,000 glycoprotein: characterization and immunodetection in MCF7 cells. Cancer Res 1985; 45: 709.PubMedGoogle Scholar
  10. 10.
    Capony F, Garcia M, Capdevielle J, Rougeot C, Ferrara P, Rochefort H. Purification and characterization of the secreted and cellular 52-kDa proteins regulated by estrogens in human breast cancer cells. Eur J Biochem 1986; 161: 505.PubMedCrossRefGoogle Scholar
  11. 11.
    Capony F, Morisset M, Barrett AJ, et al. Phosphorylation, glycosylation and proteolytic activity of the 52K estrogen-induced protein secreted by MCF7 cells. J Cell Biol 1987; 104: 253.PubMedCrossRefGoogle Scholar
  12. 12.
    Morisset M, Capony F, Rochefort H. Processing and estrogen regulation of the 52-kDa protein inside MCF7 breast cancer cells. Endocrinology 1986; 119: 2773.Google Scholar
  13. 13.
    Von Figura K, Hasilik A. Lysosomal enzymes and their receptors. Annu Rev Biochem 1985; 55: 167.CrossRefGoogle Scholar
  14. 14.
    Barrett AJ. Purification of isoenzymes from human and chicken liver. Biochem J 1970; 117: 601.PubMedGoogle Scholar
  15. 15.
    Augereau P, Garcia M, Cavailles V, Chalbos D, Capony F, Rochefort H. cDNA cloning and regulation of the messenger RNA for the estrogen-regulated 52K protease in human breast cancer. Proceedings of the Endocrine Society Meeting, The Endocrine Society, Bethesda, 1987 (in press).Google Scholar
  16. 16.
    Faust PL, Kornfeld S, Chirgwin JM. Cloning and sequence analysis of cDNA for human cathepsin D. Proc Natl Acad Sci USA 1985; 82: 4910.PubMedCrossRefGoogle Scholar
  17. 17.
    Moulton BC, Koenig BB. Progestin increases cathepsin D in uterine luminal epithelial cells. Am J Physiol 1983; 244: E442–6.PubMedGoogle Scholar
  18. 18.
    Cavailles V, Augereau P, Garcia M, Rochefort H. Estrogens induce the mRNA coding for a pro-cathepsin-D secreted by breast cancer cells. Submitted for publication.Google Scholar
  19. 19.
    Chambon P, Dierich A, Gaub MP, et al. Promoter elements of genes coding for proteins and modulation of transcription by estrogens and progesterone. In: Greep O, ed. Recent Progress in Hormone Research. New York: Academic Press, 1984; 40: 1.Google Scholar
  20. 20.
    Augereau P, Garcia M, Mattei MG, et al. Cloning and sequencing of the 52K cathepsin D cDNA of MCF7 breast cancer cells and mapping on chromosome 11. Mol Endocrinol 1987 (in press).Google Scholar
  21. 21.
    Vignon F, Capony F, Chambon M, Freiss G, Garcia M, Rochefort H. Autocrine growth stimulation of the MCF7 breast cancer cells by the estrogen-regulated 52K protein. Endocrinology 1986; 118: 1537.PubMedCrossRefGoogle Scholar
  22. 22.
    Morisset M, Capony F, Rochefort H. The 52-kDa estrogen-induced protein secreted by MCF7 cells is a lysosomal acidic protease. Biochem Biophys Res Commun 1986; 138: 102.PubMedCrossRefGoogle Scholar
  23. 23.
    Briozzo P, Morisset M, Capony F, Rougeot C, Rochefort H. Cathepsin D is the major acidic protease secreted by cultured breast cancer cells and able to degrade extracellular matrix in vitro. Submitted for publication.Google Scholar
  24. 24.
    Rochefort H, Coezy E, Joly E, Westley B, Vignon F. Hormonal control of breast cancer in cell culture. In: Iacobelli S, et al., eds. Hormones and cancer. New York: Raven Press, 1980: 21.Google Scholar
  25. 25.
    Vignon F, Derocq D, Chambon N, Rochefort H. Endocrinologie. Les proteines oestrogeno-induites secretees par les cellules mammaires cancereuses humaines MCF7 stimulent leur proliferation. C R Acad Sci [III] (Paris) 1983; 296: 151.Google Scholar
  26. 26.
    Lippman ME, Dickson RB, Bates S, et al. Breast Cancer Res Treat 1986; 1: 59–70.CrossRefGoogle Scholar
  27. 27.
    Manni A, Wright C, Feil P, et al. Autocrine stimulation by estradiol-regulated growth factors of rat hormone-responsive mammary cancer: interaction with the polyamine pathway. Cancer Res 1986; 46: 1594–9.PubMedGoogle Scholar
  28. 28.
    Dickson RB, McManaway ME, Lippman ME. Estrogen-induced factors of breast cancer cells partially replace estrogen to promote tumor growth. Science 1986; 232: 1540.PubMedCrossRefGoogle Scholar
  29. 29.
    Low DA, Wiley HS, Cunningham DD. In: Feramisco J, Ozanne B, Stiles B, eds. Cancer cells 3. Growth factors and transformation. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory, 1985: 401–8.Google Scholar
  30. 30.
    Derynck R, Roberts AB, Winkler ME, Chen EY, Goeddel DV. Human transforming growth factor-ß: precursor structure and expression in E. Coli. Cell 1984; 38: 287.Google Scholar
  31. 31.
    Lawrence DA, Pircher R, Jullien P. Conversion of a high molecular weight latent ß-TGF from chicken embryo fibroblasts into a low molecular weight active ß-TGF under acidic conditions. Biochem Biophys Res Commun 1985; 133: 1026.PubMedCrossRefGoogle Scholar
  32. 32.
    Appella E, Robinson EA, Ullrich SJ, et al. The receptor-binding sequence of urokinase. A biological function for the growth-factor module of proteases. J Biol Chem 1987; 262: 4437.PubMedGoogle Scholar
  33. 33.
    Garcia M, Salazar-Retana G, Pages A, et al. Distribution of the Mr 52,000 estrogen-regulated protein in benign breast diseases and other tissues by immunohistochemistry. Cancer Res 1986; 46: 3734.PubMedGoogle Scholar
  34. 34.
    Dupont WD, Page DL. Risk factors for breast cancer in women with proliferative breast disease. N Engl J Med 1985; 312: 146.PubMedCrossRefGoogle Scholar
  35. 35.
    Cavailles V, Garcia M, Salazar G, et al. Immunodetection of estrogen receptor and 52K protein in fine needle aspirates of breast cancer. J Natl Cancer Inst 1987; 79: 245.PubMedGoogle Scholar
  36. 36.
    Rogier H, Freiss G, Paolucci F, Garcia M, Pau B. An immunoenzymometric assay for determining 52K protein in the cytosol of breast cancer tissues. Submitted for publication.Google Scholar
  37. 37.
    Freiss G, Rochefort H, Maudelonde T, Cavalie G, Khalaf S, Vignon F. Characterization and properties of two monoclonal antibodies to the pro-fragment of the 52K estrogen-regulated protease. Proceedings of the Endocrine Society, The Endocrine Society, Bethesda, 1987 (in press).Google Scholar
  38. 38.
    Maudelonde T, Khalaf S, Garcia M, et al. Immunoenzymatic assay of 52K cathepsin D in 182 breast cancer cytosols. Low correlation with other prognostic parameters. Cancer Res 1987 (in press).Google Scholar
  39. 39.
    Thorpe S, et al. The 52K-cathepsin-D, a novel independent prognostic factor in breast cancer. Submitted for publication.Google Scholar
  40. 40.
    Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 1980; 284: 67.PubMedCrossRefGoogle Scholar
  41. 41.
    Goldfarb RH. Proteolytic enzymes in tumor invasion and degradation of host extracellular matrices. In: Honn KV, Powers WE, Sloane BF, eds. Mechanisms of cancer metastasis. Boston: Martinus Nijhoff Publishing, 1986: 341.CrossRefGoogle Scholar
  42. 42.
    Ossowski L, Reich E. Antibodies to plasminogen activator inhibit human tumor metastasis. Cell 1983; 35: 611.PubMedCrossRefGoogle Scholar
  43. 43.
    Poole AR. Tumor lysosomal enzymes and invasive growth. In: Dingle JT, Fell HB, eds. Lysosomes in biology and pathology. New York: American Elsevier Publishing Company, 1979: 304.Google Scholar
  44. 44.
    Pietras RJ, Szego CM. Estrogen-induced membrane alterations and growth associated with proteinase activity in endometrial cells. J Cell Biol 1979; 81: 649.PubMedCrossRefGoogle Scholar
  45. 45.
    Butler WB, Kirkland WL, Jorgensen TL. Induction of plasminogen activator by estrogen in a human breast cancer cell line (MCF7). Biochem Biophys Res Commun 1979; 90: 1328–34.PubMedCrossRefGoogle Scholar
  46. 46.
    Rochefort H, Capony F, Garcia M, et al. Estrogen-induced lysosomal proteases secreted by breast cancer cells: a role in carcinogenesis? J Cell Biochem 1987; 35–7.Google Scholar
  47. 47.
    Cho-Chung YS, Gullino PM. Mammary tumor regression. V. Role of acid ribonuclease and cathepsin. J Biol Chem 1973; 248: 4743.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Henri Rochefort
    • 1
  • Patrick Augereau
    • 1
  • Pierre Briozzo
    • 1
  • Francoise Capony
    • 1
  • Vincent Cavailles
    • 1
  • Marcel Garcia
    • 1
  • Muriel Morisset
    • 1
  • Gilles Freiss
    • 1
  • Francoise Vignon
    • 1
  1. 1.Unite d’Endocrinologie Cellulaire et Moleculaire (U 148)INSERM and Universite de Montpellier, Faculte de MedecineMontpellierFrance

Personalised recommendations