Skip to main content

An Estrogen Induced Protease in Breast Cancer: From Basic Research to Clinical Applications

  • Chapter
Book cover Steroid Receptors in Health and Disease

Abstract

In the cascade of events following the interaction of estrogens with their nuclear receptors in breast cancer cells, some of them are involved in the hormonal stimulation of cell growth. Their identification may improve both our understanding of the mechanism by which tumor growth is controlled and the monitoring and treatment of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams DJ, Edwards DP, McGuire WL. Estrogen regulation of specific proteins as a mode of hormone action in human breast cancer; vol 11. In: Biomembranes, 1983: 389.

    Google Scholar 

  2. Rochefort H, Chalbos D, Capony F, et al. Effect of estrogen in breast cancer cells in culture: released proteins and control of cell proliferation. In: Gurpide E, Calandra R, Levy C, Soto RJ, eds. Hormones and cancer; vol 142. New York: Alan R. Liss, Inc., 1984: 37.

    Google Scholar 

  3. Vignon F, Rochefort H. The regulation by estradiol of proteins released by breast cancer cells. In: Hollander VP, ed. Hormone responsive tumors. New York: Academic Press, 1985: 135.

    Google Scholar 

  4. Lippman ME, Dickson RB, Bates S, et al. Autocrine and paracrine growth regulation of human breast cancer. Breast Cancer Res Treat 1986; 1: 59.

    Article  Google Scholar 

  5. Westley B, Rochefort H. Estradiol induced proteins in the MCF7 human breast cancer cell line. Biochem Biophys Res Commun 1979; 90: 410.

    Article  PubMed  CAS  Google Scholar 

  6. Westley B, Rochefort H. A secreted glycoprotein induced by estrogen in human breast cancer cell lines. Cell 1980; 20: 352.

    Article  Google Scholar 

  7. Garcia M, Contesso G, Duplay H, et al. Immunohistochemical distribution of the 52K protein in mammary tumors: a marker associated to cell proliferation rather than to hormone responsiveness. J Steroid Biochem 1987; 26 (in press).

    Google Scholar 

  8. Westley B, May FEB, Brown AMC, et al. Effects of antiestrogens on the estrogen regulated pS2 RNA, 52-kDa and 180-kDa protein in MCF7 cells and two tamoxifen resistant sublines. J Biol Chem 1984; 259: 10030.

    PubMed  CAS  Google Scholar 

  9. Garcia M, Capony F, Derocq D, Simon D, Pau B, Rochefort H. Monoclonal antibodies to the estrogen-regulated Mr 52,000 glycoprotein: characterization and immunodetection in MCF7 cells. Cancer Res 1985; 45: 709.

    PubMed  CAS  Google Scholar 

  10. Capony F, Garcia M, Capdevielle J, Rougeot C, Ferrara P, Rochefort H. Purification and characterization of the secreted and cellular 52-kDa proteins regulated by estrogens in human breast cancer cells. Eur J Biochem 1986; 161: 505.

    Article  PubMed  CAS  Google Scholar 

  11. Capony F, Morisset M, Barrett AJ, et al. Phosphorylation, glycosylation and proteolytic activity of the 52K estrogen-induced protein secreted by MCF7 cells. J Cell Biol 1987; 104: 253.

    Article  PubMed  CAS  Google Scholar 

  12. Morisset M, Capony F, Rochefort H. Processing and estrogen regulation of the 52-kDa protein inside MCF7 breast cancer cells. Endocrinology 1986; 119: 2773.

    Google Scholar 

  13. Von Figura K, Hasilik A. Lysosomal enzymes and their receptors. Annu Rev Biochem 1985; 55: 167.

    Article  Google Scholar 

  14. Barrett AJ. Purification of isoenzymes from human and chicken liver. Biochem J 1970; 117: 601.

    PubMed  CAS  Google Scholar 

  15. Augereau P, Garcia M, Cavailles V, Chalbos D, Capony F, Rochefort H. cDNA cloning and regulation of the messenger RNA for the estrogen-regulated 52K protease in human breast cancer. Proceedings of the Endocrine Society Meeting, The Endocrine Society, Bethesda, 1987 (in press).

    Google Scholar 

  16. Faust PL, Kornfeld S, Chirgwin JM. Cloning and sequence analysis of cDNA for human cathepsin D. Proc Natl Acad Sci USA 1985; 82: 4910.

    Article  PubMed  CAS  Google Scholar 

  17. Moulton BC, Koenig BB. Progestin increases cathepsin D in uterine luminal epithelial cells. Am J Physiol 1983; 244: E442–6.

    PubMed  CAS  Google Scholar 

  18. Cavailles V, Augereau P, Garcia M, Rochefort H. Estrogens induce the mRNA coding for a pro-cathepsin-D secreted by breast cancer cells. Submitted for publication.

    Google Scholar 

  19. Chambon P, Dierich A, Gaub MP, et al. Promoter elements of genes coding for proteins and modulation of transcription by estrogens and progesterone. In: Greep O, ed. Recent Progress in Hormone Research. New York: Academic Press, 1984; 40: 1.

    Google Scholar 

  20. Augereau P, Garcia M, Mattei MG, et al. Cloning and sequencing of the 52K cathepsin D cDNA of MCF7 breast cancer cells and mapping on chromosome 11. Mol Endocrinol 1987 (in press).

    Google Scholar 

  21. Vignon F, Capony F, Chambon M, Freiss G, Garcia M, Rochefort H. Autocrine growth stimulation of the MCF7 breast cancer cells by the estrogen-regulated 52K protein. Endocrinology 1986; 118: 1537.

    Article  PubMed  CAS  Google Scholar 

  22. Morisset M, Capony F, Rochefort H. The 52-kDa estrogen-induced protein secreted by MCF7 cells is a lysosomal acidic protease. Biochem Biophys Res Commun 1986; 138: 102.

    Article  PubMed  CAS  Google Scholar 

  23. Briozzo P, Morisset M, Capony F, Rougeot C, Rochefort H. Cathepsin D is the major acidic protease secreted by cultured breast cancer cells and able to degrade extracellular matrix in vitro. Submitted for publication.

    Google Scholar 

  24. Rochefort H, Coezy E, Joly E, Westley B, Vignon F. Hormonal control of breast cancer in cell culture. In: Iacobelli S, et al., eds. Hormones and cancer. New York: Raven Press, 1980: 21.

    Google Scholar 

  25. Vignon F, Derocq D, Chambon N, Rochefort H. Endocrinologie. Les proteines oestrogeno-induites secretees par les cellules mammaires cancereuses humaines MCF7 stimulent leur proliferation. C R Acad Sci [III] (Paris) 1983; 296: 151.

    CAS  Google Scholar 

  26. Lippman ME, Dickson RB, Bates S, et al. Breast Cancer Res Treat 1986; 1: 59–70.

    Article  Google Scholar 

  27. Manni A, Wright C, Feil P, et al. Autocrine stimulation by estradiol-regulated growth factors of rat hormone-responsive mammary cancer: interaction with the polyamine pathway. Cancer Res 1986; 46: 1594–9.

    PubMed  CAS  Google Scholar 

  28. Dickson RB, McManaway ME, Lippman ME. Estrogen-induced factors of breast cancer cells partially replace estrogen to promote tumor growth. Science 1986; 232: 1540.

    Article  PubMed  CAS  Google Scholar 

  29. Low DA, Wiley HS, Cunningham DD. In: Feramisco J, Ozanne B, Stiles B, eds. Cancer cells 3. Growth factors and transformation. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory, 1985: 401–8.

    Google Scholar 

  30. Derynck R, Roberts AB, Winkler ME, Chen EY, Goeddel DV. Human transforming growth factor-ß: precursor structure and expression in E. Coli. Cell 1984; 38: 287.

    CAS  Google Scholar 

  31. Lawrence DA, Pircher R, Jullien P. Conversion of a high molecular weight latent ß-TGF from chicken embryo fibroblasts into a low molecular weight active ß-TGF under acidic conditions. Biochem Biophys Res Commun 1985; 133: 1026.

    Article  PubMed  CAS  Google Scholar 

  32. Appella E, Robinson EA, Ullrich SJ, et al. The receptor-binding sequence of urokinase. A biological function for the growth-factor module of proteases. J Biol Chem 1987; 262: 4437.

    PubMed  CAS  Google Scholar 

  33. Garcia M, Salazar-Retana G, Pages A, et al. Distribution of the Mr 52,000 estrogen-regulated protein in benign breast diseases and other tissues by immunohistochemistry. Cancer Res 1986; 46: 3734.

    PubMed  CAS  Google Scholar 

  34. Dupont WD, Page DL. Risk factors for breast cancer in women with proliferative breast disease. N Engl J Med 1985; 312: 146.

    Article  PubMed  CAS  Google Scholar 

  35. Cavailles V, Garcia M, Salazar G, et al. Immunodetection of estrogen receptor and 52K protein in fine needle aspirates of breast cancer. J Natl Cancer Inst 1987; 79: 245.

    PubMed  CAS  Google Scholar 

  36. Rogier H, Freiss G, Paolucci F, Garcia M, Pau B. An immunoenzymometric assay for determining 52K protein in the cytosol of breast cancer tissues. Submitted for publication.

    Google Scholar 

  37. Freiss G, Rochefort H, Maudelonde T, Cavalie G, Khalaf S, Vignon F. Characterization and properties of two monoclonal antibodies to the pro-fragment of the 52K estrogen-regulated protease. Proceedings of the Endocrine Society, The Endocrine Society, Bethesda, 1987 (in press).

    Google Scholar 

  38. Maudelonde T, Khalaf S, Garcia M, et al. Immunoenzymatic assay of 52K cathepsin D in 182 breast cancer cytosols. Low correlation with other prognostic parameters. Cancer Res 1987 (in press).

    Google Scholar 

  39. Thorpe S, et al. The 52K-cathepsin-D, a novel independent prognostic factor in breast cancer. Submitted for publication.

    Google Scholar 

  40. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 1980; 284: 67.

    Article  PubMed  CAS  Google Scholar 

  41. Goldfarb RH. Proteolytic enzymes in tumor invasion and degradation of host extracellular matrices. In: Honn KV, Powers WE, Sloane BF, eds. Mechanisms of cancer metastasis. Boston: Martinus Nijhoff Publishing, 1986: 341.

    Chapter  Google Scholar 

  42. Ossowski L, Reich E. Antibodies to plasminogen activator inhibit human tumor metastasis. Cell 1983; 35: 611.

    Article  PubMed  CAS  Google Scholar 

  43. Poole AR. Tumor lysosomal enzymes and invasive growth. In: Dingle JT, Fell HB, eds. Lysosomes in biology and pathology. New York: American Elsevier Publishing Company, 1979: 304.

    Google Scholar 

  44. Pietras RJ, Szego CM. Estrogen-induced membrane alterations and growth associated with proteinase activity in endometrial cells. J Cell Biol 1979; 81: 649.

    Article  PubMed  CAS  Google Scholar 

  45. Butler WB, Kirkland WL, Jorgensen TL. Induction of plasminogen activator by estrogen in a human breast cancer cell line (MCF7). Biochem Biophys Res Commun 1979; 90: 1328–34.

    Article  PubMed  CAS  Google Scholar 

  46. Rochefort H, Capony F, Garcia M, et al. Estrogen-induced lysosomal proteases secreted by breast cancer cells: a role in carcinogenesis? J Cell Biochem 1987; 35–7.

    Google Scholar 

  47. Cho-Chung YS, Gullino PM. Mammary tumor regression. V. Role of acid ribonuclease and cathepsin. J Biol Chem 1973; 248: 4743.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Rochefort, H. et al. (1988). An Estrogen Induced Protease in Breast Cancer: From Basic Research to Clinical Applications. In: Moudgil, V.K. (eds) Steroid Receptors in Health and Disease. Serono Symposia, USA. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5541-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5541-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5543-4

  • Online ISBN: 978-1-4684-5541-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics