Molecular Determinants of Positive and Negative Regulation by Ligand-Regulated Transcription Factors

  • Michael G. Rosenfeld
  • Christopher K. Glass
  • Rodrigo Franco
  • Stuart Adler
  • Marian L. Waterman
  • Xi He
Part of the Serono Symposia, USA book series (SERONOSYMP)


The cloning of the glucocorticoid and estrogen receptors (1–5) permitted identification of a super-family of ligand-regulated transcription factors (e.g., 6–12), including the c-erb A gene products, which bound thyroid hormone (9,11). Knowledge of the structure of these transcription factors has permitted initial exploration of the functional domains. In the case of the glucocorticoid receptor, the DNA binding domain has been identified and appears to be sufficient for stimulation of transcription (13–17). In this manuscript, we review data regarding the regulation of rat prolactin and growth hormone gene expression by the estrogen and thyroid hormone receptors, respectively. The cis-active elements and the molecular determinants of positive and negative regulation of the prolactin gene by estrogen are defined. The T3 regulatory element in the rat growth hormone gene is defined, using an avidin/biotin complex DNA (ABCD) binding assay, and demonstrated to bind the c-erb A gene product.


Estrogen Receptor Glucocorticoid Receptor Growth Hormone Gene Prolactin Gene Bind Thyroid Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hollenberg SM, Weinberger C, Ong ES, et al. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 1985; 318: 635–41.PubMedCrossRefGoogle Scholar
  2. 2.
    Green S, Chambon P. A superfamily of potentially oncogenic hormone receptors. Nature 1986; 324: 615–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Miesfeld R, Rusconi S, Godowski PJ, et al. Genetic complementation of a glucocorticoid receptor deficiency by expression of cloned receptor cDNA. Cell 1986; 47: 389–99.CrossRefGoogle Scholar
  4. 4.
    Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J. Sequence and expression of human estrogen receptor complementary DNA. Science 1986; 231: 1150–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Green S, Walter P, Kumar V, Krust A, Bornert J-M, Argos P, Chambon P. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 1986; 320: 134–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Jeltsch JM, Krozowski Z, Quirin-Stricher C, et al. Cloning of the chicken progesterone receptor. Proc Natl Acad Sci USA 83: 5424–8.Google Scholar
  7. 7.
    Loosfelt H, Atger M, Misrahi M, et al. Cloning and sequence analysis of rabbit progesterone-receptor complementary DNA. Proc Natl Acad Sci USA 1986; 83: 9045–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Arriza, JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 1987; 237: 268–75.PubMedCrossRefGoogle Scholar
  9. 9.
    Sap J, Munoz A, Damm Y, et al. The c-erb-A protein is a high affinity receptor for thyroid hormone. Nature 1986; 324; 635–40.PubMedCrossRefGoogle Scholar
  10. 10.
    Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM. The c-erb-A gene encodes a thyroid hormone receptor. Nature 1986; 324: 641–6.PubMedCrossRefGoogle Scholar
  11. 11.
    McDonnell DP, Mangelsdorf DJ, Pike JW, Haussler MR, O’Malley BW. Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science 1987; 235: 1214–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Danielsen M, Northrop JP, Ringold GM. The mouse glucocorticoid receptor: mapping of functional domains by cloning, sequencing, and expression of wild type and mutant receptor proteins. EMBO J 1986; 5: 2513–22.PubMedGoogle Scholar
  13. 13.
    Giguere V, Hollenberg SM, Rosenfeld MG, Evans RM. Functional domains of the human glucocorticoid receptor. Cell 1986; 46: 645–52.PubMedCrossRefGoogle Scholar
  14. 14.
    Hollenberg SM, Giguere V, Segui P, Evans RM. Colocalization of DNA-binding and transcriptional activation functions in the human glucocorticoid receptor. Cell 1987; 49: 39–46.PubMedCrossRefGoogle Scholar
  15. 15.
    Godowski PJ, Rusconi S, Miesfeld R, Yamamoto KR. Glucocorticoid receptor mutants that are constitutive activators of transcriptional enhancement. Nature 1987; 325: 365–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Rusconi S, Yamamoto KR. Functional dissection of the hormone and DNA binding activities of the glucocorticoid receptor. EMBO J 1987; 6: 1309–15.PubMedGoogle Scholar
  17. 17.
    Miesfeld R, Godowski PJ, Maler BA, Yamamoto KR. Glucocorticoid receptor mutants that define a small region sufficient for enhancer activation. Science 1987; 236: 423–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Jantzen H-M, Strahle U, Gloss B, et al. Cooperativity of glucocorticoid response elements located far upstream of the tyrosine aminotransferase gene. Cell 1987; 49: 29–38.PubMedCrossRefGoogle Scholar
  19. 19.
    Scheidereit C, Westphal HM, Carlson C, Bosshard H, Beato M. Molecular model of the interaction between the glucocorticoid receptor and regulatory elements of inducible genes. DNA 1986; 5: 383–91.PubMedCrossRefGoogle Scholar
  20. 20.
    Walker P, Germond J-E, Brown-Luedi M, Givel F, Wahli W. Sequence homologies in the region preceding the transcription initiation site of the liver estrogen-responsive vitellogenin and apo-VLDLII genes. Nucleic Acids Res 1984; 12: 8611–26.PubMedCrossRefGoogle Scholar
  21. 21.
    Jost J-P, Seldran M, Geiser M. Preferential binding of estrogen-receptor complex to a region containing the estrogen-dependent hypomethylation site preceding the chicken vitellogenin II gene. Proc Natl Acad Sci USA 1984; 81: 429–33.PubMedCrossRefGoogle Scholar
  22. 22.
    Klein-Hitpass L, Schorpp M, Wagner U, Ryffel GU. An estrogen-responsive element derived from the 5’ flanking region of the Xenopus vitellogenin A2 gene functions in transfected human cell. Cell 1986; 46: 1053–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Krust A, Green S, Argos P, Kumar V, Walter P, Bornert J-M, Chambon P. The chicken oestrogen receptor sequence: homology with v-erb-A and the human oestrogen and glucocorticoid receptors. EMBO J 1986; 5: 891–7.PubMedGoogle Scholar
  24. 24.
    Kumar V, Green S, Staub A, Chambon P. Localization of the oestradi ol-binding and putative DNA-binding domains of the human oestrogen receptor. EMBO J 1986; 5: 2231–6.PubMedGoogle Scholar
  25. 25.
    Green S, Chambon P. Oestradiol induction of a glucocorticoid-responsive gene by a chimaeric receptor. Nature 1987; 325: 75–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Maurer RA, Gorski J. Effects of estradiol-17-beta and pimozide on prolactin synthesis in male rats and female rats. Endocrinology 1977; 101: 76–84.PubMedCrossRefGoogle Scholar
  27. 27.
    Haug E, Gautvik KM. Effects of sex steroids on prolactin secreting rat pituitary cells in culture. Endocrinology 1976; 99: 1482–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Lieberman ME, Maurer RA, Gorski J. Estrogen control of prolactin synthesis in vitro. Proc Natl Acad Sci USA 1978; 75: 5946–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Stone RT, Maurer RA, Gorski J, Effect of estradiol-17-beta on preprolactin messenger ribonucleic acid activity in the rat pituitary gland. Biochemistry 1977; 16: 4915–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Ryan R, Shupnik MA, Gorski J. Effect of estrogen on preprolactin messenger ribonucleic acid sequences. Biochemistry 1979; 18: 2044–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Seo H, Refetoff S, Vassart G, Brocas H. Comparison of primary and secondary stimulation of male rats by estradiol in terms of prolactin synthesis and mRNA accumulation in the pituitary. Proc Natl Acad Sci USA 1979; 76: 824–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Maurer RA. Estradiol regulates the transcription of the prolactin gene. J Biol Chem 1982; 257: 2133–6.PubMedGoogle Scholar
  33. 33.
    Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS. Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci USA 1986; 83: 2496–500.PubMedCrossRefGoogle Scholar
  34. 34.
    Nelson C, Crenshaw EB III, Franco R, Lira SA, Albert VR, Evans RM, Rosenfeld MG. Discrete cis-active genomic sequences dictate the pituitary cell type-specific expression of rat prolactin and growth hormone genes. Nature 1986; 322: 557–62.PubMedCrossRefGoogle Scholar
  35. 35.
    Glass CK, Franco R, Weinberger C, Albert V, Evans RM, Rosenfeld MG. A c-erbA binding site in the rat growth hormone gene mediates trans-activation by thyroid hormone. Nature 1987.Google Scholar
  36. 36.
    Waterman ML, Adler S, Nelson C, Greene GL, Evans RM, Rosenfeld MG. A single domain of the estrogen receptor confers DNA binding and transcriptional activation of the rat prolactin gene. Mol Endocrinol 1987。Google Scholar
  37. 37.
    Evans RM, Birnberg NS, Rosenfeld MG. Glucocorticoid and thyroid hormones transcriptionally regulate growth hormone gene expression. Proc Natl Acad Sci USA 1982; 79: 7659–63.PubMedCrossRefGoogle Scholar
  38. 38.
    Diamond DJ, Goodman HM. Regulation of growth hormone messenger RNA synthesis by dexamethasone and triiodothyronine: transcriptional rate and mRNA stability changes in pituitary tumor cells. J Mol Biol 1985; 181: 41–62.PubMedCrossRefGoogle Scholar
  39. 39.
    Spindler SR, Mellon SH, Baxter JD. Growth hormone gene transcription is regulated by thyroid and glucocorticoid hormones in cultured rat pituitary tumor cells. J Biol Chem 1982; 257: 11627–32.PubMedGoogle Scholar
  40. 40.
    Yaffee BM, Samuels HH. Hormonal regulation of the growth hormone gene relationship of the rate of transcription to the level of nuclear thyroid hormone-receptor complexes. J Biol Chem 1984; 259: 6284–91.Google Scholar
  41. 41.
    Larsen PR, Harney JW, Moore DD. Sequences required for cell-type specific thyroid hormone regulation of rat growth hormone promoter activity. J Biol Chem 1986; 261: 14373–6.PubMedGoogle Scholar
  42. 42.
    Flug F, Copp RP, Casanova J, Horowitz ZD, Janocko B, Plotnick M, Samuels HH. Cis-acting elements of the rat growth hormone gene which mediate basal and regulated expression by thyroid hormone. J Biol Chem 1987; 262: 6373–82.PubMedGoogle Scholar
  43. 43.
    Casanova J, Copp RP, Janocko L, Samuels HH. Sflanking DNA of the rat growth hormone gene mediates regulated expression by thyroid hormone. J Biol Chem 1985; 260: 11744–8.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Michael G. Rosenfeld
    • 1
  • Christopher K. Glass
    • 1
  • Rodrigo Franco
    • 1
  • Stuart Adler
    • 1
  • Marian L. Waterman
    • 1
  • Xi He
    • 1
  1. 1.HHMI, Eukaryotic Regulatory Biology Program, School of MedicineUniversity of CaliforniaLa JollaUSA

Personalised recommendations